L(s) = 1 | − 2.53·2-s − 1.59·4-s + 27.8·7-s + 24.2·8-s + 35.8·11-s − 27.3·13-s − 70.5·14-s − 48.6·16-s + 93.6·17-s + 135.·19-s − 90.6·22-s − 0.407·23-s + 69.2·26-s − 44.5·28-s + 194.·29-s − 96.7·31-s − 71.1·32-s − 236.·34-s − 186.·37-s − 343.·38-s − 53.6·41-s − 519.·43-s − 57.2·44-s + 1.03·46-s + 190.·47-s + 434.·49-s + 43.7·52-s + ⋯ |
L(s) = 1 | − 0.894·2-s − 0.199·4-s + 1.50·7-s + 1.07·8-s + 0.981·11-s − 0.583·13-s − 1.34·14-s − 0.760·16-s + 1.33·17-s + 1.63·19-s − 0.878·22-s − 0.00369·23-s + 0.522·26-s − 0.300·28-s + 1.24·29-s − 0.560·31-s − 0.393·32-s − 1.19·34-s − 0.830·37-s − 1.46·38-s − 0.204·41-s − 1.84·43-s − 0.196·44-s + 0.00330·46-s + 0.591·47-s + 1.26·49-s + 0.116·52-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(675s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.564055272 |
L(21) |
≈ |
1.564055272 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+2.53T+8T2 |
| 7 | 1−27.8T+343T2 |
| 11 | 1−35.8T+1.33e3T2 |
| 13 | 1+27.3T+2.19e3T2 |
| 17 | 1−93.6T+4.91e3T2 |
| 19 | 1−135.T+6.85e3T2 |
| 23 | 1+0.407T+1.21e4T2 |
| 29 | 1−194.T+2.43e4T2 |
| 31 | 1+96.7T+2.97e4T2 |
| 37 | 1+186.T+5.06e4T2 |
| 41 | 1+53.6T+6.89e4T2 |
| 43 | 1+519.T+7.95e4T2 |
| 47 | 1−190.T+1.03e5T2 |
| 53 | 1+533.T+1.48e5T2 |
| 59 | 1−472.T+2.05e5T2 |
| 61 | 1+327.T+2.26e5T2 |
| 67 | 1+78.0T+3.00e5T2 |
| 71 | 1−707.T+3.57e5T2 |
| 73 | 1−344.T+3.89e5T2 |
| 79 | 1−98.3T+4.93e5T2 |
| 83 | 1−1.24e3T+5.71e5T2 |
| 89 | 1+448.T+7.04e5T2 |
| 97 | 1−472.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.920279182618299182715821057595, −9.280828050472990049248076615079, −8.297117857678951953725167394289, −7.78598324336757235089341246393, −6.92551060141358386486629757652, −5.33067488385657575166064099733, −4.76502419260906597287252224153, −3.48704778763113943636216315049, −1.69904924127376626688144351769, −0.936627922637311638810939463396,
0.936627922637311638810939463396, 1.69904924127376626688144351769, 3.48704778763113943636216315049, 4.76502419260906597287252224153, 5.33067488385657575166064099733, 6.92551060141358386486629757652, 7.78598324336757235089341246393, 8.297117857678951953725167394289, 9.280828050472990049248076615079, 9.920279182618299182715821057595