Properties

Label 2-675-1.1-c3-0-25
Degree $2$
Conductor $675$
Sign $1$
Analytic cond. $39.8262$
Root an. cond. $6.31080$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.53·2-s − 1.59·4-s + 27.8·7-s + 24.2·8-s + 35.8·11-s − 27.3·13-s − 70.5·14-s − 48.6·16-s + 93.6·17-s + 135.·19-s − 90.6·22-s − 0.407·23-s + 69.2·26-s − 44.5·28-s + 194.·29-s − 96.7·31-s − 71.1·32-s − 236.·34-s − 186.·37-s − 343.·38-s − 53.6·41-s − 519.·43-s − 57.2·44-s + 1.03·46-s + 190.·47-s + 434.·49-s + 43.7·52-s + ⋯
L(s)  = 1  − 0.894·2-s − 0.199·4-s + 1.50·7-s + 1.07·8-s + 0.981·11-s − 0.583·13-s − 1.34·14-s − 0.760·16-s + 1.33·17-s + 1.63·19-s − 0.878·22-s − 0.00369·23-s + 0.522·26-s − 0.300·28-s + 1.24·29-s − 0.560·31-s − 0.393·32-s − 1.19·34-s − 0.830·37-s − 1.46·38-s − 0.204·41-s − 1.84·43-s − 0.196·44-s + 0.00330·46-s + 0.591·47-s + 1.26·49-s + 0.116·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(39.8262\)
Root analytic conductor: \(6.31080\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.564055272\)
\(L(\frac12)\) \(\approx\) \(1.564055272\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 2.53T + 8T^{2} \)
7 \( 1 - 27.8T + 343T^{2} \)
11 \( 1 - 35.8T + 1.33e3T^{2} \)
13 \( 1 + 27.3T + 2.19e3T^{2} \)
17 \( 1 - 93.6T + 4.91e3T^{2} \)
19 \( 1 - 135.T + 6.85e3T^{2} \)
23 \( 1 + 0.407T + 1.21e4T^{2} \)
29 \( 1 - 194.T + 2.43e4T^{2} \)
31 \( 1 + 96.7T + 2.97e4T^{2} \)
37 \( 1 + 186.T + 5.06e4T^{2} \)
41 \( 1 + 53.6T + 6.89e4T^{2} \)
43 \( 1 + 519.T + 7.95e4T^{2} \)
47 \( 1 - 190.T + 1.03e5T^{2} \)
53 \( 1 + 533.T + 1.48e5T^{2} \)
59 \( 1 - 472.T + 2.05e5T^{2} \)
61 \( 1 + 327.T + 2.26e5T^{2} \)
67 \( 1 + 78.0T + 3.00e5T^{2} \)
71 \( 1 - 707.T + 3.57e5T^{2} \)
73 \( 1 - 344.T + 3.89e5T^{2} \)
79 \( 1 - 98.3T + 4.93e5T^{2} \)
83 \( 1 - 1.24e3T + 5.71e5T^{2} \)
89 \( 1 + 448.T + 7.04e5T^{2} \)
97 \( 1 - 472.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.920279182618299182715821057595, −9.280828050472990049248076615079, −8.297117857678951953725167394289, −7.78598324336757235089341246393, −6.92551060141358386486629757652, −5.33067488385657575166064099733, −4.76502419260906597287252224153, −3.48704778763113943636216315049, −1.69904924127376626688144351769, −0.936627922637311638810939463396, 0.936627922637311638810939463396, 1.69904924127376626688144351769, 3.48704778763113943636216315049, 4.76502419260906597287252224153, 5.33067488385657575166064099733, 6.92551060141358386486629757652, 7.78598324336757235089341246393, 8.297117857678951953725167394289, 9.280828050472990049248076615079, 9.920279182618299182715821057595

Graph of the $Z$-function along the critical line