L(s) = 1 | + 0.561·2-s − 7.68·4-s − 29.8·7-s − 8.80·8-s − 56.0·11-s + 20.4·13-s − 16.7·14-s + 56.5·16-s − 18.5·17-s − 70.7·19-s − 31.4·22-s − 111.·23-s + 11.4·26-s + 229.·28-s − 72.7·29-s + 106.·31-s + 102.·32-s − 10.4·34-s + 100.·37-s − 39.7·38-s + 307.·41-s − 479.·43-s + 430.·44-s − 62.8·46-s + 472.·47-s + 547.·49-s − 156.·52-s + ⋯ |
L(s) = 1 | + 0.198·2-s − 0.960·4-s − 1.61·7-s − 0.389·8-s − 1.53·11-s + 0.435·13-s − 0.319·14-s + 0.883·16-s − 0.264·17-s − 0.854·19-s − 0.304·22-s − 1.01·23-s + 0.0865·26-s + 1.54·28-s − 0.465·29-s + 0.615·31-s + 0.564·32-s − 0.0525·34-s + 0.446·37-s − 0.169·38-s + 1.17·41-s − 1.69·43-s + 1.47·44-s − 0.201·46-s + 1.46·47-s + 1.59·49-s − 0.418·52-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(675s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.5533169039 |
L(21) |
≈ |
0.5533169039 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1−0.561T+8T2 |
| 7 | 1+29.8T+343T2 |
| 11 | 1+56.0T+1.33e3T2 |
| 13 | 1−20.4T+2.19e3T2 |
| 17 | 1+18.5T+4.91e3T2 |
| 19 | 1+70.7T+6.85e3T2 |
| 23 | 1+111.T+1.21e4T2 |
| 29 | 1+72.7T+2.43e4T2 |
| 31 | 1−106.T+2.97e4T2 |
| 37 | 1−100.T+5.06e4T2 |
| 41 | 1−307.T+6.89e4T2 |
| 43 | 1+479.T+7.95e4T2 |
| 47 | 1−472.T+1.03e5T2 |
| 53 | 1−583.T+1.48e5T2 |
| 59 | 1+429.T+2.05e5T2 |
| 61 | 1+443.T+2.26e5T2 |
| 67 | 1−465.T+3.00e5T2 |
| 71 | 1+1.05e3T+3.57e5T2 |
| 73 | 1+234.T+3.89e5T2 |
| 79 | 1−275.T+4.93e5T2 |
| 83 | 1−1.18e3T+5.71e5T2 |
| 89 | 1+309.T+7.04e5T2 |
| 97 | 1−637.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12133302774640062505865409940, −9.277610260670559263246374486900, −8.477039130836817883123303564916, −7.55576800353488664800154960802, −6.28980871927789693624363328836, −5.67427364799795083103387043053, −4.48252339822949814848647305595, −3.54279313649687255228512272630, −2.53253139979344015134078415680, −0.39703553741338774913318063482,
0.39703553741338774913318063482, 2.53253139979344015134078415680, 3.54279313649687255228512272630, 4.48252339822949814848647305595, 5.67427364799795083103387043053, 6.28980871927789693624363328836, 7.55576800353488664800154960802, 8.477039130836817883123303564916, 9.277610260670559263246374486900, 10.12133302774640062505865409940