Properties

Label 2-675-1.1-c3-0-3
Degree $2$
Conductor $675$
Sign $1$
Analytic cond. $39.8262$
Root an. cond. $6.31080$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.561·2-s − 7.68·4-s − 29.8·7-s − 8.80·8-s − 56.0·11-s + 20.4·13-s − 16.7·14-s + 56.5·16-s − 18.5·17-s − 70.7·19-s − 31.4·22-s − 111.·23-s + 11.4·26-s + 229.·28-s − 72.7·29-s + 106.·31-s + 102.·32-s − 10.4·34-s + 100.·37-s − 39.7·38-s + 307.·41-s − 479.·43-s + 430.·44-s − 62.8·46-s + 472.·47-s + 547.·49-s − 156.·52-s + ⋯
L(s)  = 1  + 0.198·2-s − 0.960·4-s − 1.61·7-s − 0.389·8-s − 1.53·11-s + 0.435·13-s − 0.319·14-s + 0.883·16-s − 0.264·17-s − 0.854·19-s − 0.304·22-s − 1.01·23-s + 0.0865·26-s + 1.54·28-s − 0.465·29-s + 0.615·31-s + 0.564·32-s − 0.0525·34-s + 0.446·37-s − 0.169·38-s + 1.17·41-s − 1.69·43-s + 1.47·44-s − 0.201·46-s + 1.46·47-s + 1.59·49-s − 0.418·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(39.8262\)
Root analytic conductor: \(6.31080\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5533169039\)
\(L(\frac12)\) \(\approx\) \(0.5533169039\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 0.561T + 8T^{2} \)
7 \( 1 + 29.8T + 343T^{2} \)
11 \( 1 + 56.0T + 1.33e3T^{2} \)
13 \( 1 - 20.4T + 2.19e3T^{2} \)
17 \( 1 + 18.5T + 4.91e3T^{2} \)
19 \( 1 + 70.7T + 6.85e3T^{2} \)
23 \( 1 + 111.T + 1.21e4T^{2} \)
29 \( 1 + 72.7T + 2.43e4T^{2} \)
31 \( 1 - 106.T + 2.97e4T^{2} \)
37 \( 1 - 100.T + 5.06e4T^{2} \)
41 \( 1 - 307.T + 6.89e4T^{2} \)
43 \( 1 + 479.T + 7.95e4T^{2} \)
47 \( 1 - 472.T + 1.03e5T^{2} \)
53 \( 1 - 583.T + 1.48e5T^{2} \)
59 \( 1 + 429.T + 2.05e5T^{2} \)
61 \( 1 + 443.T + 2.26e5T^{2} \)
67 \( 1 - 465.T + 3.00e5T^{2} \)
71 \( 1 + 1.05e3T + 3.57e5T^{2} \)
73 \( 1 + 234.T + 3.89e5T^{2} \)
79 \( 1 - 275.T + 4.93e5T^{2} \)
83 \( 1 - 1.18e3T + 5.71e5T^{2} \)
89 \( 1 + 309.T + 7.04e5T^{2} \)
97 \( 1 - 637.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.12133302774640062505865409940, −9.277610260670559263246374486900, −8.477039130836817883123303564916, −7.55576800353488664800154960802, −6.28980871927789693624363328836, −5.67427364799795083103387043053, −4.48252339822949814848647305595, −3.54279313649687255228512272630, −2.53253139979344015134078415680, −0.39703553741338774913318063482, 0.39703553741338774913318063482, 2.53253139979344015134078415680, 3.54279313649687255228512272630, 4.48252339822949814848647305595, 5.67427364799795083103387043053, 6.28980871927789693624363328836, 7.55576800353488664800154960802, 8.477039130836817883123303564916, 9.277610260670559263246374486900, 10.12133302774640062505865409940

Graph of the $Z$-function along the critical line