Properties

Label 2-675-1.1-c3-0-34
Degree $2$
Conductor $675$
Sign $-1$
Analytic cond. $39.8262$
Root an. cond. $6.31080$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.20·2-s + 19.0·4-s − 24.4·7-s − 57.4·8-s − 28.9·11-s + 65.3·13-s + 126.·14-s + 146.·16-s − 68.1·17-s + 104.·19-s + 150.·22-s + 154.·23-s − 340.·26-s − 464.·28-s − 205.·29-s − 18.2·31-s − 301.·32-s + 354.·34-s + 337.·37-s − 543.·38-s − 195.·41-s − 334.·43-s − 552.·44-s − 805.·46-s + 5.00·47-s + 252.·49-s + 1.24e3·52-s + ⋯
L(s)  = 1  − 1.83·2-s + 2.38·4-s − 1.31·7-s − 2.53·8-s − 0.794·11-s + 1.39·13-s + 2.42·14-s + 2.28·16-s − 0.972·17-s + 1.26·19-s + 1.46·22-s + 1.40·23-s − 2.56·26-s − 3.13·28-s − 1.31·29-s − 0.105·31-s − 1.66·32-s + 1.78·34-s + 1.50·37-s − 2.31·38-s − 0.746·41-s − 1.18·43-s − 1.89·44-s − 2.58·46-s + 0.0155·47-s + 0.735·49-s + 3.32·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(39.8262\)
Root analytic conductor: \(6.31080\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 675,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 5.20T + 8T^{2} \)
7 \( 1 + 24.4T + 343T^{2} \)
11 \( 1 + 28.9T + 1.33e3T^{2} \)
13 \( 1 - 65.3T + 2.19e3T^{2} \)
17 \( 1 + 68.1T + 4.91e3T^{2} \)
19 \( 1 - 104.T + 6.85e3T^{2} \)
23 \( 1 - 154.T + 1.21e4T^{2} \)
29 \( 1 + 205.T + 2.43e4T^{2} \)
31 \( 1 + 18.2T + 2.97e4T^{2} \)
37 \( 1 - 337.T + 5.06e4T^{2} \)
41 \( 1 + 195.T + 6.89e4T^{2} \)
43 \( 1 + 334.T + 7.95e4T^{2} \)
47 \( 1 - 5.00T + 1.03e5T^{2} \)
53 \( 1 - 319.T + 1.48e5T^{2} \)
59 \( 1 - 430.T + 2.05e5T^{2} \)
61 \( 1 - 594.T + 2.26e5T^{2} \)
67 \( 1 + 195.T + 3.00e5T^{2} \)
71 \( 1 - 425.T + 3.57e5T^{2} \)
73 \( 1 + 929.T + 3.89e5T^{2} \)
79 \( 1 - 24.4T + 4.93e5T^{2} \)
83 \( 1 - 545.T + 5.71e5T^{2} \)
89 \( 1 + 84.1T + 7.04e5T^{2} \)
97 \( 1 + 827.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.523971702247407299411588211658, −8.972635155990737467013127521931, −8.135713212416500450137870138357, −7.14478822281319723859118112369, −6.54315020216551930978633735327, −5.53229775656126475448198560204, −3.51855424481931352723135829536, −2.57677249517291400594606789658, −1.13238179255917717196505540243, 0, 1.13238179255917717196505540243, 2.57677249517291400594606789658, 3.51855424481931352723135829536, 5.53229775656126475448198560204, 6.54315020216551930978633735327, 7.14478822281319723859118112369, 8.135713212416500450137870138357, 8.972635155990737467013127521931, 9.523971702247407299411588211658

Graph of the $Z$-function along the critical line