L(s) = 1 | − 3.60·2-s + 4.99·4-s − 9·7-s + 10.8·8-s − 14.4·11-s + 34·13-s + 32.4·14-s − 79·16-s + 7.21·17-s − 101·19-s + 51.9·22-s + 108.·23-s − 122.·26-s − 44.9·28-s + 165.·29-s − 3·31-s + 198.·32-s − 25.9·34-s − 67·37-s + 364.·38-s − 201.·41-s − 137·43-s − 72.1·44-s − 390·46-s + 115.·47-s − 262·49-s + 169.·52-s + ⋯ |
L(s) = 1 | − 1.27·2-s + 0.624·4-s − 0.485·7-s + 0.478·8-s − 0.395·11-s + 0.725·13-s + 0.619·14-s − 1.23·16-s + 0.102·17-s − 1.21·19-s + 0.503·22-s + 0.980·23-s − 0.924·26-s − 0.303·28-s + 1.06·29-s − 0.0173·31-s + 1.09·32-s − 0.131·34-s − 0.297·37-s + 1.55·38-s − 0.769·41-s − 0.485·43-s − 0.247·44-s − 1.25·46-s + 0.358·47-s − 0.763·49-s + 0.453·52-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(675s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+3.60T+8T2 |
| 7 | 1+9T+343T2 |
| 11 | 1+14.4T+1.33e3T2 |
| 13 | 1−34T+2.19e3T2 |
| 17 | 1−7.21T+4.91e3T2 |
| 19 | 1+101T+6.85e3T2 |
| 23 | 1−108.T+1.21e4T2 |
| 29 | 1−165.T+2.43e4T2 |
| 31 | 1+3T+2.97e4T2 |
| 37 | 1+67T+5.06e4T2 |
| 41 | 1+201.T+6.89e4T2 |
| 43 | 1+137T+7.95e4T2 |
| 47 | 1−115.T+1.03e5T2 |
| 53 | 1−677.T+1.48e5T2 |
| 59 | 1−872.T+2.05e5T2 |
| 61 | 1+563T+2.26e5T2 |
| 67 | 1−1.04e3T+3.00e5T2 |
| 71 | 1+786.T+3.57e5T2 |
| 73 | 1+503T+3.89e5T2 |
| 79 | 1−615T+4.93e5T2 |
| 83 | 1+237.T+5.71e5T2 |
| 89 | 1+973.T+7.04e5T2 |
| 97 | 1+19T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.653615177128799339858546407925, −8.658644378013392503406004328059, −8.327029873538318416435291916222, −7.12933377947154105195811115838, −6.45137704185909663750377940568, −5.14299765028413885321342381311, −3.95009122690299283750359061872, −2.56876196431752541391331981678, −1.21980592044597267614797041905, 0,
1.21980592044597267614797041905, 2.56876196431752541391331981678, 3.95009122690299283750359061872, 5.14299765028413885321342381311, 6.45137704185909663750377940568, 7.12933377947154105195811115838, 8.327029873538318416435291916222, 8.658644378013392503406004328059, 9.653615177128799339858546407925