L(s) = 1 | + 4.72·2-s + 14.3·4-s + 17.6·7-s + 29.9·8-s + 34.2·11-s + 53.8·13-s + 83.3·14-s + 26.9·16-s − 74.7·17-s − 89.5·19-s + 161.·22-s + 176.·23-s + 254.·26-s + 252.·28-s + 194.·29-s + 107.·31-s − 112.·32-s − 353.·34-s − 430.·37-s − 423.·38-s − 108.·41-s + 409.·43-s + 490.·44-s + 832.·46-s + 409.·47-s − 32.3·49-s + 772.·52-s + ⋯ |
L(s) = 1 | + 1.67·2-s + 1.79·4-s + 0.951·7-s + 1.32·8-s + 0.938·11-s + 1.14·13-s + 1.59·14-s + 0.420·16-s − 1.06·17-s − 1.08·19-s + 1.56·22-s + 1.59·23-s + 1.92·26-s + 1.70·28-s + 1.24·29-s + 0.625·31-s − 0.621·32-s − 1.78·34-s − 1.91·37-s − 1.80·38-s − 0.414·41-s + 1.45·43-s + 1.68·44-s + 2.66·46-s + 1.26·47-s − 0.0942·49-s + 2.06·52-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(675s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
6.595064893 |
L(21) |
≈ |
6.595064893 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1−4.72T+8T2 |
| 7 | 1−17.6T+343T2 |
| 11 | 1−34.2T+1.33e3T2 |
| 13 | 1−53.8T+2.19e3T2 |
| 17 | 1+74.7T+4.91e3T2 |
| 19 | 1+89.5T+6.85e3T2 |
| 23 | 1−176.T+1.21e4T2 |
| 29 | 1−194.T+2.43e4T2 |
| 31 | 1−107.T+2.97e4T2 |
| 37 | 1+430.T+5.06e4T2 |
| 41 | 1+108.T+6.89e4T2 |
| 43 | 1−409.T+7.95e4T2 |
| 47 | 1−409.T+1.03e5T2 |
| 53 | 1+24.7T+1.48e5T2 |
| 59 | 1+295.T+2.05e5T2 |
| 61 | 1−305.T+2.26e5T2 |
| 67 | 1−915.T+3.00e5T2 |
| 71 | 1−228.T+3.57e5T2 |
| 73 | 1+158.T+3.89e5T2 |
| 79 | 1+319.T+4.93e5T2 |
| 83 | 1+936.T+5.71e5T2 |
| 89 | 1−920.T+7.04e5T2 |
| 97 | 1+914.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.74876727449536854510236490957, −9.000357740098645967644555965293, −8.409392055075721851563552251319, −6.90111400305564020519232836489, −6.46258074171494389415915486706, −5.35175842239200626864032898204, −4.48961372882132526124054158582, −3.83307642005460006128568726533, −2.57388877336550929259719498313, −1.35769056484624897502867917158,
1.35769056484624897502867917158, 2.57388877336550929259719498313, 3.83307642005460006128568726533, 4.48961372882132526124054158582, 5.35175842239200626864032898204, 6.46258074171494389415915486706, 6.90111400305564020519232836489, 8.409392055075721851563552251319, 9.000357740098645967644555965293, 10.74876727449536854510236490957