L(s) = 1 | + 4.72·2-s + 14.3·4-s + 17.6·7-s + 29.9·8-s + 34.2·11-s + 53.8·13-s + 83.3·14-s + 26.9·16-s − 74.7·17-s − 89.5·19-s + 161.·22-s + 176.·23-s + 254.·26-s + 252.·28-s + 194.·29-s + 107.·31-s − 112.·32-s − 353.·34-s − 430.·37-s − 423.·38-s − 108.·41-s + 409.·43-s + 490.·44-s + 832.·46-s + 409.·47-s − 32.3·49-s + 772.·52-s + ⋯ |
L(s) = 1 | + 1.67·2-s + 1.79·4-s + 0.951·7-s + 1.32·8-s + 0.938·11-s + 1.14·13-s + 1.59·14-s + 0.420·16-s − 1.06·17-s − 1.08·19-s + 1.56·22-s + 1.59·23-s + 1.92·26-s + 1.70·28-s + 1.24·29-s + 0.625·31-s − 0.621·32-s − 1.78·34-s − 1.91·37-s − 1.80·38-s − 0.414·41-s + 1.45·43-s + 1.68·44-s + 2.66·46-s + 1.26·47-s − 0.0942·49-s + 2.06·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(6.595064893\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.595064893\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 4.72T + 8T^{2} \) |
| 7 | \( 1 - 17.6T + 343T^{2} \) |
| 11 | \( 1 - 34.2T + 1.33e3T^{2} \) |
| 13 | \( 1 - 53.8T + 2.19e3T^{2} \) |
| 17 | \( 1 + 74.7T + 4.91e3T^{2} \) |
| 19 | \( 1 + 89.5T + 6.85e3T^{2} \) |
| 23 | \( 1 - 176.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 194.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 107.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 430.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 108.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 409.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 409.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 24.7T + 1.48e5T^{2} \) |
| 59 | \( 1 + 295.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 305.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 915.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 228.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 158.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 319.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 936.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 920.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 914.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74876727449536854510236490957, −9.000357740098645967644555965293, −8.409392055075721851563552251319, −6.90111400305564020519232836489, −6.46258074171494389415915486706, −5.35175842239200626864032898204, −4.48961372882132526124054158582, −3.83307642005460006128568726533, −2.57388877336550929259719498313, −1.35769056484624897502867917158,
1.35769056484624897502867917158, 2.57388877336550929259719498313, 3.83307642005460006128568726533, 4.48961372882132526124054158582, 5.35175842239200626864032898204, 6.46258074171494389415915486706, 6.90111400305564020519232836489, 8.409392055075721851563552251319, 9.000357740098645967644555965293, 10.74876727449536854510236490957