Properties

Label 2-675-1.1-c3-0-51
Degree $2$
Conductor $675$
Sign $1$
Analytic cond. $39.8262$
Root an. cond. $6.31080$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.72·2-s + 14.3·4-s + 17.6·7-s + 29.9·8-s + 34.2·11-s + 53.8·13-s + 83.3·14-s + 26.9·16-s − 74.7·17-s − 89.5·19-s + 161.·22-s + 176.·23-s + 254.·26-s + 252.·28-s + 194.·29-s + 107.·31-s − 112.·32-s − 353.·34-s − 430.·37-s − 423.·38-s − 108.·41-s + 409.·43-s + 490.·44-s + 832.·46-s + 409.·47-s − 32.3·49-s + 772.·52-s + ⋯
L(s)  = 1  + 1.67·2-s + 1.79·4-s + 0.951·7-s + 1.32·8-s + 0.938·11-s + 1.14·13-s + 1.59·14-s + 0.420·16-s − 1.06·17-s − 1.08·19-s + 1.56·22-s + 1.59·23-s + 1.92·26-s + 1.70·28-s + 1.24·29-s + 0.625·31-s − 0.621·32-s − 1.78·34-s − 1.91·37-s − 1.80·38-s − 0.414·41-s + 1.45·43-s + 1.68·44-s + 2.66·46-s + 1.26·47-s − 0.0942·49-s + 2.06·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(39.8262\)
Root analytic conductor: \(6.31080\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.595064893\)
\(L(\frac12)\) \(\approx\) \(6.595064893\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 4.72T + 8T^{2} \)
7 \( 1 - 17.6T + 343T^{2} \)
11 \( 1 - 34.2T + 1.33e3T^{2} \)
13 \( 1 - 53.8T + 2.19e3T^{2} \)
17 \( 1 + 74.7T + 4.91e3T^{2} \)
19 \( 1 + 89.5T + 6.85e3T^{2} \)
23 \( 1 - 176.T + 1.21e4T^{2} \)
29 \( 1 - 194.T + 2.43e4T^{2} \)
31 \( 1 - 107.T + 2.97e4T^{2} \)
37 \( 1 + 430.T + 5.06e4T^{2} \)
41 \( 1 + 108.T + 6.89e4T^{2} \)
43 \( 1 - 409.T + 7.95e4T^{2} \)
47 \( 1 - 409.T + 1.03e5T^{2} \)
53 \( 1 + 24.7T + 1.48e5T^{2} \)
59 \( 1 + 295.T + 2.05e5T^{2} \)
61 \( 1 - 305.T + 2.26e5T^{2} \)
67 \( 1 - 915.T + 3.00e5T^{2} \)
71 \( 1 - 228.T + 3.57e5T^{2} \)
73 \( 1 + 158.T + 3.89e5T^{2} \)
79 \( 1 + 319.T + 4.93e5T^{2} \)
83 \( 1 + 936.T + 5.71e5T^{2} \)
89 \( 1 - 920.T + 7.04e5T^{2} \)
97 \( 1 + 914.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.74876727449536854510236490957, −9.000357740098645967644555965293, −8.409392055075721851563552251319, −6.90111400305564020519232836489, −6.46258074171494389415915486706, −5.35175842239200626864032898204, −4.48961372882132526124054158582, −3.83307642005460006128568726533, −2.57388877336550929259719498313, −1.35769056484624897502867917158, 1.35769056484624897502867917158, 2.57388877336550929259719498313, 3.83307642005460006128568726533, 4.48961372882132526124054158582, 5.35175842239200626864032898204, 6.46258074171494389415915486706, 6.90111400305564020519232836489, 8.409392055075721851563552251319, 9.000357740098645967644555965293, 10.74876727449536854510236490957

Graph of the $Z$-function along the critical line