L(s) = 1 | + (1.03 − 1.23i)2-s + (1.23 − 1.21i)3-s + (−0.105 − 0.597i)4-s + (−0.212 − 2.78i)6-s + (1.71 + 0.302i)7-s + (1.94 + 1.12i)8-s + (0.0676 − 2.99i)9-s + (2.93 − 1.06i)11-s + (−0.853 − 0.612i)12-s + (1.21 + 1.44i)13-s + (2.15 − 1.80i)14-s + (4.55 − 1.65i)16-s + (−5.56 + 3.21i)17-s + (−3.63 − 3.19i)18-s + (−2.43 + 4.21i)19-s + ⋯ |
L(s) = 1 | + (0.733 − 0.874i)2-s + (0.715 − 0.699i)3-s + (−0.0526 − 0.298i)4-s + (−0.0866 − 1.13i)6-s + (0.647 + 0.114i)7-s + (0.688 + 0.397i)8-s + (0.0225 − 0.999i)9-s + (0.884 − 0.321i)11-s + (−0.246 − 0.176i)12-s + (0.337 + 0.402i)13-s + (0.575 − 0.482i)14-s + (1.13 − 0.414i)16-s + (−1.34 + 0.778i)17-s + (−0.857 − 0.753i)18-s + (−0.558 + 0.967i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.109 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.109 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.29922 - 2.05963i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.29922 - 2.05963i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.23 + 1.21i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-1.03 + 1.23i)T + (-0.347 - 1.96i)T^{2} \) |
| 7 | \( 1 + (-1.71 - 0.302i)T + (6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (-2.93 + 1.06i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (-1.21 - 1.44i)T + (-2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (5.56 - 3.21i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.43 - 4.21i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.73 - 0.481i)T + (21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (5.94 + 4.98i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (0.687 + 3.89i)T + (-29.1 + 10.6i)T^{2} \) |
| 37 | \( 1 + (0.704 - 0.406i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.80 + 4.86i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (0.901 + 2.47i)T + (-32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (7.03 + 1.24i)T + (44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + 1.86iT - 53T^{2} \) |
| 59 | \( 1 + (0.971 + 0.353i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (1.78 - 10.1i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (-8.76 - 10.4i)T + (-11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-4.06 - 7.03i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (8.53 + 4.92i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-11.3 - 9.56i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (5.92 - 7.06i)T + (-14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (-6.28 + 10.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.39 - 14.8i)T + (-74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59222256604962832598761198935, −9.381235023070166687969730680124, −8.460290181229207125376246120096, −7.88352272667074443441799877890, −6.70493648518675406553455365033, −5.77087312630096008690946615762, −4.12236282268814924399541828136, −3.83438007716546518105027965209, −2.27634193278807308696379066844, −1.64237742594467920450898533647,
1.87198864730275629675092479639, 3.45509220535545195524857332688, 4.57395793662979583730055541035, 4.89882560258140593896985780450, 6.24995230709484139308407568120, 7.09682729025215052426545002785, 7.980759936550222676419818468592, 8.939723581205023805014841435824, 9.636686647195102370198443578893, 10.84187428811258693405858759331