Properties

Label 2-675-135.34-c1-0-23
Degree 22
Conductor 675675
Sign 0.1170.993i0.117 - 0.993i
Analytic cond. 5.389905.38990
Root an. cond. 2.321612.32161
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.300 + 0.826i)2-s + (1.62 + 0.592i)3-s + (0.939 − 0.788i)4-s + 1.52i·6-s + (−2.41 + 2.87i)7-s + (2.45 + 1.41i)8-s + (2.29 + 1.92i)9-s + (−0.180 + 1.02i)11-s + (1.99 − 0.726i)12-s + (−1.08 + 2.99i)13-s + (−3.10 − 1.13i)14-s + (−0.00727 + 0.0412i)16-s + (−0.405 + 0.233i)17-s + (−0.902 + 2.47i)18-s + (2.34 − 4.06i)19-s + ⋯
L(s)  = 1  + (0.212 + 0.584i)2-s + (0.939 + 0.342i)3-s + (0.469 − 0.394i)4-s + 0.621i·6-s + (−0.913 + 1.08i)7-s + (0.868 + 0.501i)8-s + (0.766 + 0.642i)9-s + (−0.0545 + 0.309i)11-s + (0.576 − 0.209i)12-s + (−0.302 + 0.830i)13-s + (−0.830 − 0.302i)14-s + (−0.00181 + 0.0103i)16-s + (−0.0982 + 0.0567i)17-s + (−0.212 + 0.584i)18-s + (0.538 − 0.932i)19-s + ⋯

Functional equation

Λ(s)=(675s/2ΓC(s)L(s)=((0.1170.993i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.117 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(675s/2ΓC(s+1/2)L(s)=((0.1170.993i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.117 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 675675    =    33523^{3} \cdot 5^{2}
Sign: 0.1170.993i0.117 - 0.993i
Analytic conductor: 5.389905.38990
Root analytic conductor: 2.321612.32161
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ675(574,)\chi_{675} (574, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 675, ( :1/2), 0.1170.993i)(2,\ 675,\ (\ :1/2),\ 0.117 - 0.993i)

Particular Values

L(1)L(1) \approx 1.84900+1.64254i1.84900 + 1.64254i
L(12)L(\frac12) \approx 1.84900+1.64254i1.84900 + 1.64254i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.620.592i)T 1 + (-1.62 - 0.592i)T
5 1 1
good2 1+(0.3000.826i)T+(1.53+1.28i)T2 1 + (-0.300 - 0.826i)T + (-1.53 + 1.28i)T^{2}
7 1+(2.412.87i)T+(1.216.89i)T2 1 + (2.41 - 2.87i)T + (-1.21 - 6.89i)T^{2}
11 1+(0.1801.02i)T+(10.33.76i)T2 1 + (0.180 - 1.02i)T + (-10.3 - 3.76i)T^{2}
13 1+(1.082.99i)T+(9.958.35i)T2 1 + (1.08 - 2.99i)T + (-9.95 - 8.35i)T^{2}
17 1+(0.4050.233i)T+(8.514.7i)T2 1 + (0.405 - 0.233i)T + (8.5 - 14.7i)T^{2}
19 1+(2.34+4.06i)T+(9.516.4i)T2 1 + (-2.34 + 4.06i)T + (-9.5 - 16.4i)T^{2}
23 1+(3.45+4.11i)T+(3.99+22.6i)T2 1 + (3.45 + 4.11i)T + (-3.99 + 22.6i)T^{2}
29 1+(5.45+1.98i)T+(22.218.6i)T2 1 + (-5.45 + 1.98i)T + (22.2 - 18.6i)T^{2}
31 1+(3.142.63i)T+(5.3830.5i)T2 1 + (3.14 - 2.63i)T + (5.38 - 30.5i)T^{2}
37 1+(3.87+2.23i)T+(18.532.0i)T2 1 + (-3.87 + 2.23i)T + (18.5 - 32.0i)T^{2}
41 1+(7.52+2.73i)T+(31.4+26.3i)T2 1 + (7.52 + 2.73i)T + (31.4 + 26.3i)T^{2}
43 1+(11.92.11i)T+(40.4+14.7i)T2 1 + (-11.9 - 2.11i)T + (40.4 + 14.7i)T^{2}
47 1+(2.222.65i)T+(8.1646.2i)T2 1 + (2.22 - 2.65i)T + (-8.16 - 46.2i)T^{2}
53 1+8.83iT53T2 1 + 8.83iT - 53T^{2}
59 1+(2.36+13.4i)T+(55.4+20.1i)T2 1 + (2.36 + 13.4i)T + (-55.4 + 20.1i)T^{2}
61 1+(7.466.26i)T+(10.5+60.0i)T2 1 + (-7.46 - 6.26i)T + (10.5 + 60.0i)T^{2}
67 1+(0.6231.71i)T+(51.343.0i)T2 1 + (0.623 - 1.71i)T + (-51.3 - 43.0i)T^{2}
71 1+(3.85+6.67i)T+(35.5+61.4i)T2 1 + (3.85 + 6.67i)T + (-35.5 + 61.4i)T^{2}
73 1+(0.7050.407i)T+(36.5+63.2i)T2 1 + (-0.705 - 0.407i)T + (36.5 + 63.2i)T^{2}
79 1+(3.811.38i)T+(60.550.7i)T2 1 + (3.81 - 1.38i)T + (60.5 - 50.7i)T^{2}
83 1+(5.81+15.9i)T+(63.5+53.3i)T2 1 + (5.81 + 15.9i)T + (-63.5 + 53.3i)T^{2}
89 1+(5.199.00i)T+(44.577.0i)T2 1 + (5.19 - 9.00i)T + (-44.5 - 77.0i)T^{2}
97 1+(6.02+1.06i)T+(91.1+33.1i)T2 1 + (6.02 + 1.06i)T + (91.1 + 33.1i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.46600348238192142302371930962, −9.660628387202151001919311942489, −9.037621464340035479490657395462, −8.086856139536791214641369968187, −7.03917308345942727636341597833, −6.40126106107705162790474540269, −5.28307184201176531075440757803, −4.33565536775290560216198864350, −2.85449468057580580454719898934, −2.08399801724437977880282913809, 1.21192609207470900952189099355, 2.70252703236316582122298059914, 3.45827122602436038115954886676, 4.17651916823089099576722728218, 5.96869599337755112343967603580, 7.09354123535797082659809558875, 7.57071715066642209724476291327, 8.417366991611189809231459640121, 9.816878904203814502196050393020, 10.11072758669553975315984201190

Graph of the ZZ-function along the critical line