L(s) = 1 | − 4-s + i·7-s + 2i·13-s + 16-s + 19-s − i·28-s − 31-s + i·37-s − i·43-s − 2i·52-s − 61-s − 64-s − 2i·67-s − i·73-s − 76-s + ⋯ |
L(s) = 1 | − 4-s + i·7-s + 2i·13-s + 16-s + 19-s − i·28-s − 31-s + i·37-s − i·43-s − 2i·52-s − 61-s − 64-s − 2i·67-s − i·73-s − 76-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7248099457\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7248099457\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + T^{2} \) |
| 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - 2iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + 2iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88001516629769638639021366239, −9.615608100842875545926687207280, −9.217022821958668079393325244446, −8.531185975237468514862768687538, −7.42626025789146920812590421178, −6.32122651159402923306347575626, −5.32222385461243599161022573612, −4.49721641591086906274051710305, −3.39282298873846328586922159066, −1.84901785243619914988913026027,
0.903546389881432883975382087892, 3.11645252466251850056974162544, 3.98437199804989189250443829933, 5.11346732251850265724749373303, 5.82383502029821587873126107837, 7.35532613837584218097585801942, 7.86139484924557572318788804059, 8.845288129942645932477566539947, 9.831807487832954854800311824728, 10.37597687462054513137667883576