L(s) = 1 | − i·4-s + (1.22 + 1.22i)7-s − 16-s − i·19-s + (1.22 − 1.22i)28-s + 31-s + (−1.22 − 1.22i)37-s + (−1.22 + 1.22i)43-s + 1.99i·49-s − 61-s + i·64-s + (−1.22 + 1.22i)73-s − 76-s + i·79-s + (−1.22 − 1.22i)97-s + ⋯ |
L(s) = 1 | − i·4-s + (1.22 + 1.22i)7-s − 16-s − i·19-s + (1.22 − 1.22i)28-s + 31-s + (−1.22 − 1.22i)37-s + (−1.22 + 1.22i)43-s + 1.99i·49-s − 61-s + i·64-s + (−1.22 + 1.22i)73-s − 76-s + i·79-s + (−1.22 − 1.22i)97-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.945+0.326i)Λ(1−s)
Λ(s)=(=(675s/2ΓC(s)L(s)(0.945+0.326i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.945+0.326i
|
Analytic conductor: |
0.336868 |
Root analytic conductor: |
0.580404 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(82,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :0), 0.945+0.326i)
|
Particular Values
L(21) |
≈ |
1.034918685 |
L(21) |
≈ |
1.034918685 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+iT2 |
| 7 | 1+(−1.22−1.22i)T+iT2 |
| 11 | 1+T2 |
| 13 | 1−iT2 |
| 17 | 1+iT2 |
| 19 | 1+iT−T2 |
| 23 | 1−iT2 |
| 29 | 1−T2 |
| 31 | 1−T+T2 |
| 37 | 1+(1.22+1.22i)T+iT2 |
| 41 | 1+T2 |
| 43 | 1+(1.22−1.22i)T−iT2 |
| 47 | 1+iT2 |
| 53 | 1−iT2 |
| 59 | 1−T2 |
| 61 | 1+T+T2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+(1.22−1.22i)T−iT2 |
| 79 | 1−iT−T2 |
| 83 | 1−iT2 |
| 89 | 1−T2 |
| 97 | 1+(1.22+1.22i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78071287903503856332010540663, −9.762127944616193245298331333996, −8.924231481404348483644161427424, −8.285837107122008038410596797855, −7.06145238520667371942355739240, −6.00988172258741036538284739376, −5.22059484773257747419478587281, −4.54166633603933565975712175367, −2.66337317044612063450904882123, −1.59296781081227783987814082373,
1.68777958372204334564742477948, 3.30526644552585761737677076977, 4.22513977990903072098060814147, 5.03736764589016524922479413453, 6.55810132509333050460831109417, 7.45057385091042767982749692910, 8.066018408074557773732614864473, 8.740921047563922360928856367337, 10.10456985609110112495793942794, 10.72382500755232839908505086296