L(s) = 1 | + (0.236 − 0.409i)2-s + (0.888 + 1.53i)4-s + (−1.28 + 2.21i)7-s + 1.78·8-s + (−3.08 + 5.34i)11-s + (−1.06 − 1.84i)13-s + (0.606 + 1.05i)14-s + (−1.35 + 2.34i)16-s − 3.16·17-s + 0.356·19-s + (1.45 + 2.52i)22-s + (−2.10 − 3.64i)23-s − 1.00·26-s − 4.55·28-s + (0.843 − 1.46i)29-s + ⋯ |
L(s) = 1 | + (0.167 − 0.289i)2-s + (0.444 + 0.769i)4-s + (−0.484 + 0.838i)7-s + 0.631·8-s + (−0.929 + 1.61i)11-s + (−0.295 − 0.512i)13-s + (0.162 + 0.280i)14-s + (−0.338 + 0.585i)16-s − 0.768·17-s + 0.0817·19-s + (0.311 + 0.539i)22-s + (−0.439 − 0.760i)23-s − 0.197·26-s − 0.860·28-s + (0.156 − 0.271i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.144 - 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.144 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.892528 + 1.03284i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.892528 + 1.03284i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.236 + 0.409i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (1.28 - 2.21i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.08 - 5.34i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.06 + 1.84i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 3.16T + 17T^{2} \) |
| 19 | \( 1 - 0.356T + 19T^{2} \) |
| 23 | \( 1 + (2.10 + 3.64i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.843 + 1.46i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.12 - 7.15i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3.63T + 37T^{2} \) |
| 41 | \( 1 + (1.36 + 2.36i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.83 + 6.64i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.71 - 9.89i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 9.43T + 53T^{2} \) |
| 59 | \( 1 + (-5.10 - 8.84i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.00549 + 0.00952i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.491 + 0.851i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.43T + 71T^{2} \) |
| 73 | \( 1 - 6.61T + 73T^{2} \) |
| 79 | \( 1 + (-4.73 + 8.20i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.20 - 9.02i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6.26T + 89T^{2} \) |
| 97 | \( 1 + (3.60 - 6.24i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65328001459690587000045441576, −10.06258266979346672839183621413, −8.983652248131037101074723723517, −8.067716023885084528210221916637, −7.25888309922819597290120005543, −6.41830226091935261091237172853, −5.12969232948471379106441292383, −4.22236541335488726787408480973, −2.78823388648393718032501100768, −2.22800276076251992325285286081,
0.64744647800304890071788867040, 2.37083798407704941980822581505, 3.68891547011130357371936929907, 4.89863801434523948215604053937, 5.89044897013248218034741783006, 6.58105052933723238282162161621, 7.50596824528879870941994969265, 8.406247124034758290526620517760, 9.639326251180183186306725896549, 10.24630517975625281672686779321