L(s) = 1 | − 2-s + 4-s − 8-s − 9-s − 2·13-s + 16-s + 17-s + 18-s + 25-s + 2·26-s − 32-s − 34-s − 36-s − 49-s − 50-s − 2·52-s + 2·53-s + 64-s + 68-s + 72-s + 81-s − 2·89-s + 98-s + 100-s − 2·101-s + 2·104-s − 2·106-s + ⋯ |
L(s) = 1 | − 2-s + 4-s − 8-s − 9-s − 2·13-s + 16-s + 17-s + 18-s + 25-s + 2·26-s − 32-s − 34-s − 36-s − 49-s − 50-s − 2·52-s + 2·53-s + 64-s + 68-s + 72-s + 81-s − 2·89-s + 98-s + 100-s − 2·101-s + 2·104-s − 2·106-s + ⋯ |
Λ(s)=(=(68s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(68s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
68
= 22⋅17
|
Sign: |
1
|
Analytic conductor: |
0.0339364 |
Root analytic conductor: |
0.184218 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ68(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 68, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.3327885867 |
L(21) |
≈ |
0.3327885867 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 17 | 1−T |
good | 3 | 1+T2 |
| 5 | (1−T)(1+T) |
| 7 | 1+T2 |
| 11 | 1+T2 |
| 13 | (1+T)2 |
| 19 | (1−T)(1+T) |
| 23 | 1+T2 |
| 29 | (1−T)(1+T) |
| 31 | 1+T2 |
| 37 | (1−T)(1+T) |
| 41 | (1−T)(1+T) |
| 43 | (1−T)(1+T) |
| 47 | (1−T)(1+T) |
| 53 | (1−T)2 |
| 59 | (1−T)(1+T) |
| 61 | (1−T)(1+T) |
| 67 | (1−T)(1+T) |
| 71 | 1+T2 |
| 73 | (1−T)(1+T) |
| 79 | 1+T2 |
| 83 | (1−T)(1+T) |
| 89 | (1+T)2 |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.02449061344557603691883920300, −14.36118879225983677422230504881, −12.47090892005841483622787798176, −11.65059393536294409108661621379, −10.36498251692829322753123217545, −9.378387468381204143197364963903, −8.141436839216771787296709142564, −7.01903598371148299622349237377, −5.41265195424507937916978031210, −2.75562279580887633473300699062,
2.75562279580887633473300699062, 5.41265195424507937916978031210, 7.01903598371148299622349237377, 8.141436839216771787296709142564, 9.378387468381204143197364963903, 10.36498251692829322753123217545, 11.65059393536294409108661621379, 12.47090892005841483622787798176, 14.36118879225983677422230504881, 15.02449061344557603691883920300