L(s) = 1 | + 1.23·3-s − 1.23·7-s − 1.47·9-s + 1.23·11-s − 4.47·13-s − 17-s + 6.47·19-s − 1.52·21-s − 1.23·23-s − 5.52·27-s + 2·29-s − 1.23·31-s + 1.52·33-s + 10.9·37-s − 5.52·39-s + 2·41-s − 1.52·43-s + 12.9·47-s − 5.47·49-s − 1.23·51-s + 2·53-s + 8.00·57-s − 14.4·59-s + 6.94·61-s + 1.81·63-s − 12·67-s − 1.52·69-s + ⋯ |
L(s) = 1 | + 0.713·3-s − 0.467·7-s − 0.490·9-s + 0.372·11-s − 1.24·13-s − 0.242·17-s + 1.48·19-s − 0.333·21-s − 0.257·23-s − 1.06·27-s + 0.371·29-s − 0.222·31-s + 0.265·33-s + 1.79·37-s − 0.885·39-s + 0.312·41-s − 0.232·43-s + 1.88·47-s − 0.781·49-s − 0.173·51-s + 0.274·53-s + 1.05·57-s − 1.88·59-s + 0.889·61-s + 0.229·63-s − 1.46·67-s − 0.183·69-s + ⋯ |
Λ(s)=(=(6800s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6800s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1+T |
good | 3 | 1−1.23T+3T2 |
| 7 | 1+1.23T+7T2 |
| 11 | 1−1.23T+11T2 |
| 13 | 1+4.47T+13T2 |
| 19 | 1−6.47T+19T2 |
| 23 | 1+1.23T+23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1+1.23T+31T2 |
| 37 | 1−10.9T+37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+1.52T+43T2 |
| 47 | 1−12.9T+47T2 |
| 53 | 1−2T+53T2 |
| 59 | 1+14.4T+59T2 |
| 61 | 1−6.94T+61T2 |
| 67 | 1+12T+67T2 |
| 71 | 1+9.23T+71T2 |
| 73 | 1+14.9T+73T2 |
| 79 | 1+11.7T+79T2 |
| 83 | 1−1.52T+83T2 |
| 89 | 1+7.52T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.53061266941886125422754389836, −7.21080385332108418266779622024, −6.13372400624271500861122358528, −5.60715061668560898884457265062, −4.65648314700274409299220172172, −3.92397123323433387355684070918, −2.86015258418388898593744428251, −2.68025832639107454132540058812, −1.36968887020875132072044389145, 0,
1.36968887020875132072044389145, 2.68025832639107454132540058812, 2.86015258418388898593744428251, 3.92397123323433387355684070918, 4.65648314700274409299220172172, 5.60715061668560898884457265062, 6.13372400624271500861122358528, 7.21080385332108418266779622024, 7.53061266941886125422754389836