L(s) = 1 | + (1.71 − 0.221i)3-s + (1.53 − 2.65i)5-s + (−2.37 + 4.11i)7-s + (2.90 − 0.761i)9-s + (2.85 − 4.94i)11-s − 1.84·13-s + (2.04 − 4.89i)15-s + (0.661 + 1.14i)17-s + (4.34 − 0.301i)19-s + (−3.16 + 7.58i)21-s + 4.21·23-s + (−2.18 − 3.78i)25-s + (4.81 − 1.95i)27-s + (−3.26 − 5.64i)29-s + (1.80 + 3.11i)31-s + ⋯ |
L(s) = 1 | + (0.991 − 0.127i)3-s + (0.684 − 1.18i)5-s + (−0.897 + 1.55i)7-s + (0.967 − 0.253i)9-s + (0.860 − 1.49i)11-s − 0.512·13-s + (0.527 − 1.26i)15-s + (0.160 + 0.277i)17-s + (0.997 − 0.0692i)19-s + (−0.690 + 1.65i)21-s + 0.879·23-s + (−0.437 − 0.757i)25-s + (0.926 − 0.375i)27-s + (−0.605 − 1.04i)29-s + (0.323 + 0.560i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.833 + 0.552i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.833 + 0.552i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.18251 - 0.657241i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.18251 - 0.657241i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.71 + 0.221i)T \) |
| 19 | \( 1 + (-4.34 + 0.301i)T \) |
good | 5 | \( 1 + (-1.53 + 2.65i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.37 - 4.11i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.85 + 4.94i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.84T + 13T^{2} \) |
| 17 | \( 1 + (-0.661 - 1.14i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 - 4.21T + 23T^{2} \) |
| 29 | \( 1 + (3.26 + 5.64i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.80 - 3.11i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 3.97T + 37T^{2} \) |
| 41 | \( 1 + (4.64 - 8.04i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + 0.541T + 43T^{2} \) |
| 47 | \( 1 + (4.65 + 8.05i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.93 - 8.54i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.92 - 3.34i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.777 + 1.34i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 - 11.9T + 67T^{2} \) |
| 71 | \( 1 + (-0.238 - 0.412i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.83 - 13.5i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 13.5T + 79T^{2} \) |
| 83 | \( 1 + (5.22 - 9.05i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.49 + 2.58i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 16.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.809557482576113591368996739171, −9.425173720012723860486994094141, −8.729713414070492460234571892714, −8.277700351331009449178480797198, −6.75985328546493818408823299665, −5.85344760198237686660987990014, −5.08242925847696130715774637636, −3.53436574689976992113812886504, −2.66883751578453844860523394128, −1.30336734306948371335698879193,
1.68740921374336496543374140312, 3.02144804605646199311944540786, 3.72337310506451730095685557714, 4.86364785748866341628176849281, 6.64994017981371485064946323631, 7.05688903613262483489168448369, 7.56815163608927462765263288905, 9.228672718181957540693037481522, 9.830558577584006267405142536075, 10.16403901305381671224494588059