L(s) = 1 | + (0.173 − 0.300i)7-s + (1.26 + 0.223i)13-s + (0.5 − 0.866i)19-s + (−0.173 + 0.984i)25-s + (−0.592 − 0.342i)31-s − 0.684i·37-s + (−1.43 + 1.20i)43-s + (0.439 + 0.761i)49-s + (−1.17 − 0.984i)61-s + (−0.673 − 1.85i)67-s + (0.266 + 1.50i)73-s + (−1.93 + 0.342i)79-s + (0.286 − 0.342i)91-s + (−0.592 + 1.62i)97-s + (−1.11 + 0.642i)103-s + ⋯ |
L(s) = 1 | + (0.173 − 0.300i)7-s + (1.26 + 0.223i)13-s + (0.5 − 0.866i)19-s + (−0.173 + 0.984i)25-s + (−0.592 − 0.342i)31-s − 0.684i·37-s + (−1.43 + 1.20i)43-s + (0.439 + 0.761i)49-s + (−1.17 − 0.984i)61-s + (−0.673 − 1.85i)67-s + (0.266 + 1.50i)73-s + (−1.93 + 0.342i)79-s + (0.286 − 0.342i)91-s + (−0.592 + 1.62i)97-s + (−1.11 + 0.642i)103-s + ⋯ |
Λ(s)=(=(684s/2ΓC(s)L(s)(0.992+0.120i)Λ(1−s)
Λ(s)=(=(684s/2ΓC(s)L(s)(0.992+0.120i)Λ(1−s)
Degree: |
2 |
Conductor: |
684
= 22⋅32⋅19
|
Sign: |
0.992+0.120i
|
Analytic conductor: |
0.341360 |
Root analytic conductor: |
0.584260 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ684(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 684, ( :0), 0.992+0.120i)
|
Particular Values
L(21) |
≈ |
0.9934736495 |
L(21) |
≈ |
0.9934736495 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 19 | 1+(−0.5+0.866i)T |
good | 5 | 1+(0.173−0.984i)T2 |
| 7 | 1+(−0.173+0.300i)T+(−0.5−0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+(−1.26−0.223i)T+(0.939+0.342i)T2 |
| 17 | 1+(0.766+0.642i)T2 |
| 23 | 1+(0.173+0.984i)T2 |
| 29 | 1+(−0.766+0.642i)T2 |
| 31 | 1+(0.592+0.342i)T+(0.5+0.866i)T2 |
| 37 | 1+0.684iT−T2 |
| 41 | 1+(0.939−0.342i)T2 |
| 43 | 1+(1.43−1.20i)T+(0.173−0.984i)T2 |
| 47 | 1+(0.766−0.642i)T2 |
| 53 | 1+(−0.173−0.984i)T2 |
| 59 | 1+(−0.766−0.642i)T2 |
| 61 | 1+(1.17+0.984i)T+(0.173+0.984i)T2 |
| 67 | 1+(0.673+1.85i)T+(−0.766+0.642i)T2 |
| 71 | 1+(−0.173+0.984i)T2 |
| 73 | 1+(−0.266−1.50i)T+(−0.939+0.342i)T2 |
| 79 | 1+(1.93−0.342i)T+(0.939−0.342i)T2 |
| 83 | 1+(−0.5−0.866i)T2 |
| 89 | 1+(0.939+0.342i)T2 |
| 97 | 1+(0.592−1.62i)T+(−0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99292849380964429654084901097, −9.704030326828789823234205827512, −9.020117991550762485058564663836, −8.067705491979884392212325146904, −7.18468926952169906891068501084, −6.24709248013325533580793953248, −5.24878685478937538249821368770, −4.13736558675381106353360772261, −3.11232544877485692927436509502, −1.49219031819791772022830470178,
1.60769552276505894918811906902, 3.12840136531938841681373630438, 4.15150028260180327291670876234, 5.41229490700873079074749976410, 6.15445842382711140112471029810, 7.21501617772971098462621695038, 8.295767936786091469123624481403, 8.789692427325710914689404402639, 9.987108360232228153659880026543, 10.60826526278565807621625997636