L(s) = 1 | − 1.46·2-s + 0.139·4-s − 2.39·5-s − 7-s + 2.72·8-s + 3.50·10-s + 11-s + 5.04·13-s + 1.46·14-s − 4.25·16-s + 6.36·17-s − 5.32·19-s − 0.333·20-s − 1.46·22-s − 4.92·23-s + 0.751·25-s − 7.37·26-s − 0.139·28-s − 5.04·29-s − 7.57·31-s + 0.786·32-s − 9.31·34-s + 2.39·35-s + 4.24·37-s + 7.78·38-s − 6.52·40-s + 0.646·41-s + ⋯ |
L(s) = 1 | − 1.03·2-s + 0.0695·4-s − 1.07·5-s − 0.377·7-s + 0.962·8-s + 1.10·10-s + 0.301·11-s + 1.39·13-s + 0.390·14-s − 1.06·16-s + 1.54·17-s − 1.22·19-s − 0.0746·20-s − 0.311·22-s − 1.02·23-s + 0.150·25-s − 1.44·26-s − 0.0263·28-s − 0.936·29-s − 1.35·31-s + 0.138·32-s − 1.59·34-s + 0.405·35-s + 0.698·37-s + 1.26·38-s − 1.03·40-s + 0.101·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 - T \) |
good | 2 | \( 1 + 1.46T + 2T^{2} \) |
| 5 | \( 1 + 2.39T + 5T^{2} \) |
| 13 | \( 1 - 5.04T + 13T^{2} \) |
| 17 | \( 1 - 6.36T + 17T^{2} \) |
| 19 | \( 1 + 5.32T + 19T^{2} \) |
| 23 | \( 1 + 4.92T + 23T^{2} \) |
| 29 | \( 1 + 5.04T + 29T^{2} \) |
| 31 | \( 1 + 7.57T + 31T^{2} \) |
| 37 | \( 1 - 4.24T + 37T^{2} \) |
| 41 | \( 1 - 0.646T + 41T^{2} \) |
| 43 | \( 1 + 10.5T + 43T^{2} \) |
| 47 | \( 1 + 0.526T + 47T^{2} \) |
| 53 | \( 1 + 3.72T + 53T^{2} \) |
| 59 | \( 1 + 7.97T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 - 8.76T + 67T^{2} \) |
| 71 | \( 1 - 11.4T + 71T^{2} \) |
| 73 | \( 1 + 13.0T + 73T^{2} \) |
| 79 | \( 1 - 11.4T + 79T^{2} \) |
| 83 | \( 1 + 13.1T + 83T^{2} \) |
| 89 | \( 1 + 11.8T + 89T^{2} \) |
| 97 | \( 1 + 1.87T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.914766859835927111181720551451, −9.126346120340607902841647364160, −8.190983578807955125415868977757, −7.85545247363002868408878656037, −6.74495981272678135025303279518, −5.64636720839533827401237143803, −4.14500488828332705287493996109, −3.56271916611484593298886659636, −1.54328246457816374798399070843, 0,
1.54328246457816374798399070843, 3.56271916611484593298886659636, 4.14500488828332705287493996109, 5.64636720839533827401237143803, 6.74495981272678135025303279518, 7.85545247363002868408878656037, 8.190983578807955125415868977757, 9.126346120340607902841647364160, 9.914766859835927111181720551451