L(s) = 1 | − 1.46·2-s + 0.139·4-s − 2.39·5-s − 7-s + 2.72·8-s + 3.50·10-s + 11-s + 5.04·13-s + 1.46·14-s − 4.25·16-s + 6.36·17-s − 5.32·19-s − 0.333·20-s − 1.46·22-s − 4.92·23-s + 0.751·25-s − 7.37·26-s − 0.139·28-s − 5.04·29-s − 7.57·31-s + 0.786·32-s − 9.31·34-s + 2.39·35-s + 4.24·37-s + 7.78·38-s − 6.52·40-s + 0.646·41-s + ⋯ |
L(s) = 1 | − 1.03·2-s + 0.0695·4-s − 1.07·5-s − 0.377·7-s + 0.962·8-s + 1.10·10-s + 0.301·11-s + 1.39·13-s + 0.390·14-s − 1.06·16-s + 1.54·17-s − 1.22·19-s − 0.0746·20-s − 0.311·22-s − 1.02·23-s + 0.150·25-s − 1.44·26-s − 0.0263·28-s − 0.936·29-s − 1.35·31-s + 0.138·32-s − 1.59·34-s + 0.405·35-s + 0.698·37-s + 1.26·38-s − 1.03·40-s + 0.101·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+T |
| 11 | 1−T |
good | 2 | 1+1.46T+2T2 |
| 5 | 1+2.39T+5T2 |
| 13 | 1−5.04T+13T2 |
| 17 | 1−6.36T+17T2 |
| 19 | 1+5.32T+19T2 |
| 23 | 1+4.92T+23T2 |
| 29 | 1+5.04T+29T2 |
| 31 | 1+7.57T+31T2 |
| 37 | 1−4.24T+37T2 |
| 41 | 1−0.646T+41T2 |
| 43 | 1+10.5T+43T2 |
| 47 | 1+0.526T+47T2 |
| 53 | 1+3.72T+53T2 |
| 59 | 1+7.97T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−8.76T+67T2 |
| 71 | 1−11.4T+71T2 |
| 73 | 1+13.0T+73T2 |
| 79 | 1−11.4T+79T2 |
| 83 | 1+13.1T+83T2 |
| 89 | 1+11.8T+89T2 |
| 97 | 1+1.87T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.914766859835927111181720551451, −9.126346120340607902841647364160, −8.190983578807955125415868977757, −7.85545247363002868408878656037, −6.74495981272678135025303279518, −5.64636720839533827401237143803, −4.14500488828332705287493996109, −3.56271916611484593298886659636, −1.54328246457816374798399070843, 0,
1.54328246457816374798399070843, 3.56271916611484593298886659636, 4.14500488828332705287493996109, 5.64636720839533827401237143803, 6.74495981272678135025303279518, 7.85545247363002868408878656037, 8.190983578807955125415868977757, 9.126346120340607902841647364160, 9.914766859835927111181720551451