Properties

Label 2-693-1.1-c1-0-9
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.46·2-s + 0.139·4-s − 2.39·5-s − 7-s + 2.72·8-s + 3.50·10-s + 11-s + 5.04·13-s + 1.46·14-s − 4.25·16-s + 6.36·17-s − 5.32·19-s − 0.333·20-s − 1.46·22-s − 4.92·23-s + 0.751·25-s − 7.37·26-s − 0.139·28-s − 5.04·29-s − 7.57·31-s + 0.786·32-s − 9.31·34-s + 2.39·35-s + 4.24·37-s + 7.78·38-s − 6.52·40-s + 0.646·41-s + ⋯
L(s)  = 1  − 1.03·2-s + 0.0695·4-s − 1.07·5-s − 0.377·7-s + 0.962·8-s + 1.10·10-s + 0.301·11-s + 1.39·13-s + 0.390·14-s − 1.06·16-s + 1.54·17-s − 1.22·19-s − 0.0746·20-s − 0.311·22-s − 1.02·23-s + 0.150·25-s − 1.44·26-s − 0.0263·28-s − 0.936·29-s − 1.35·31-s + 0.138·32-s − 1.59·34-s + 0.405·35-s + 0.698·37-s + 1.26·38-s − 1.03·40-s + 0.101·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good2 \( 1 + 1.46T + 2T^{2} \)
5 \( 1 + 2.39T + 5T^{2} \)
13 \( 1 - 5.04T + 13T^{2} \)
17 \( 1 - 6.36T + 17T^{2} \)
19 \( 1 + 5.32T + 19T^{2} \)
23 \( 1 + 4.92T + 23T^{2} \)
29 \( 1 + 5.04T + 29T^{2} \)
31 \( 1 + 7.57T + 31T^{2} \)
37 \( 1 - 4.24T + 37T^{2} \)
41 \( 1 - 0.646T + 41T^{2} \)
43 \( 1 + 10.5T + 43T^{2} \)
47 \( 1 + 0.526T + 47T^{2} \)
53 \( 1 + 3.72T + 53T^{2} \)
59 \( 1 + 7.97T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 - 8.76T + 67T^{2} \)
71 \( 1 - 11.4T + 71T^{2} \)
73 \( 1 + 13.0T + 73T^{2} \)
79 \( 1 - 11.4T + 79T^{2} \)
83 \( 1 + 13.1T + 83T^{2} \)
89 \( 1 + 11.8T + 89T^{2} \)
97 \( 1 + 1.87T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.914766859835927111181720551451, −9.126346120340607902841647364160, −8.190983578807955125415868977757, −7.85545247363002868408878656037, −6.74495981272678135025303279518, −5.64636720839533827401237143803, −4.14500488828332705287493996109, −3.56271916611484593298886659636, −1.54328246457816374798399070843, 0, 1.54328246457816374798399070843, 3.56271916611484593298886659636, 4.14500488828332705287493996109, 5.64636720839533827401237143803, 6.74495981272678135025303279518, 7.85545247363002868408878656037, 8.190983578807955125415868977757, 9.126346120340607902841647364160, 9.914766859835927111181720551451

Graph of the $Z$-function along the critical line