L(s) = 1 | − 1.50·2-s − 5.73·4-s + 0.155·5-s − 7·7-s + 20.6·8-s − 0.233·10-s + 11·11-s + 88.7·13-s + 10.5·14-s + 14.7·16-s − 102.·17-s − 26.8·19-s − 0.890·20-s − 16.5·22-s − 65.1·23-s − 124.·25-s − 133.·26-s + 40.1·28-s − 136.·29-s − 87.8·31-s − 187.·32-s + 153.·34-s − 1.08·35-s + 391.·37-s + 40.4·38-s + 3.20·40-s + 69.8·41-s + ⋯ |
L(s) = 1 | − 0.532·2-s − 0.716·4-s + 0.0138·5-s − 0.377·7-s + 0.913·8-s − 0.00739·10-s + 0.301·11-s + 1.89·13-s + 0.201·14-s + 0.230·16-s − 1.45·17-s − 0.324·19-s − 0.00995·20-s − 0.160·22-s − 0.590·23-s − 0.999·25-s − 1.00·26-s + 0.270·28-s − 0.874·29-s − 0.508·31-s − 1.03·32-s + 0.775·34-s − 0.00524·35-s + 1.73·37-s + 0.172·38-s + 0.0126·40-s + 0.266·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.038997353 |
L(21) |
≈ |
1.038997353 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1+1.50T+8T2 |
| 5 | 1−0.155T+125T2 |
| 13 | 1−88.7T+2.19e3T2 |
| 17 | 1+102.T+4.91e3T2 |
| 19 | 1+26.8T+6.85e3T2 |
| 23 | 1+65.1T+1.21e4T2 |
| 29 | 1+136.T+2.43e4T2 |
| 31 | 1+87.8T+2.97e4T2 |
| 37 | 1−391.T+5.06e4T2 |
| 41 | 1−69.8T+6.89e4T2 |
| 43 | 1−293.T+7.95e4T2 |
| 47 | 1+122.T+1.03e5T2 |
| 53 | 1+140.T+1.48e5T2 |
| 59 | 1−653.T+2.05e5T2 |
| 61 | 1−295.T+2.26e5T2 |
| 67 | 1+82.0T+3.00e5T2 |
| 71 | 1−579.T+3.57e5T2 |
| 73 | 1+123.T+3.89e5T2 |
| 79 | 1−420.T+4.93e5T2 |
| 83 | 1+59.7T+5.71e5T2 |
| 89 | 1−280.T+7.04e5T2 |
| 97 | 1−19.1T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.865219278374624669867951696012, −9.137723879258319793347386106311, −8.532911566815249268145027707022, −7.68655387436397038856427235205, −6.46996501872286748473572509047, −5.72917317210509237914354272474, −4.28388123289865148516018119376, −3.73443347680024143159591878249, −1.97199235079222243830832791133, −0.64850170131321244074605860951,
0.64850170131321244074605860951, 1.97199235079222243830832791133, 3.73443347680024143159591878249, 4.28388123289865148516018119376, 5.72917317210509237914354272474, 6.46996501872286748473572509047, 7.68655387436397038856427235205, 8.532911566815249268145027707022, 9.137723879258319793347386106311, 9.865219278374624669867951696012