L(s) = 1 | + (0.183 − 0.132i)2-s + (−0.602 + 1.85i)4-s + (−2.01 − 1.46i)5-s + (0.309 − 0.951i)7-s + (0.276 + 0.849i)8-s − 0.564·10-s + (2.66 + 1.97i)11-s + (−4.15 + 3.01i)13-s + (−0.0699 − 0.215i)14-s + (−2.98 − 2.17i)16-s + (−1.16 − 0.844i)17-s + (−1.87 − 5.77i)19-s + (3.93 − 2.85i)20-s + (0.750 + 0.00659i)22-s − 7.08·23-s + ⋯ |
L(s) = 1 | + (0.129 − 0.0940i)2-s + (−0.301 + 0.926i)4-s + (−0.902 − 0.655i)5-s + (0.116 − 0.359i)7-s + (0.0975 + 0.300i)8-s − 0.178·10-s + (0.803 + 0.594i)11-s + (−1.15 + 0.837i)13-s + (−0.0186 − 0.0574i)14-s + (−0.747 − 0.543i)16-s + (−0.282 − 0.204i)17-s + (−0.430 − 1.32i)19-s + (0.879 − 0.639i)20-s + (0.159 + 0.00140i)22-s − 1.47·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0325i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00209558 + 0.128714i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00209558 + 0.128714i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (-2.66 - 1.97i)T \) |
good | 2 | \( 1 + (-0.183 + 0.132i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (2.01 + 1.46i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (4.15 - 3.01i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.16 + 0.844i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.87 + 5.77i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 7.08T + 23T^{2} \) |
| 29 | \( 1 + (2.01 - 6.19i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (6.22 - 4.51i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.23 - 3.78i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.08 + 6.41i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 0.802T + 43T^{2} \) |
| 47 | \( 1 + (2.08 + 6.42i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.32 + 3.86i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.888 - 2.73i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.691 - 0.502i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 1.64T + 67T^{2} \) |
| 71 | \( 1 + (-3.65 - 2.65i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (4.58 - 14.1i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (1.98 - 1.44i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.81 - 1.32i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 1.73T + 89T^{2} \) |
| 97 | \( 1 + (-9.77 + 7.09i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18004333278289520887769453830, −9.884328891776014077136354070901, −8.941143292291558286756588848566, −8.448372640695146820183419015932, −7.20344349326745189130400927345, −7.00879435627334062149179762775, −5.02174525471618439992811165167, −4.37498648445733463735319080051, −3.66950059820888842696428177278, −2.11122368624654462820966833509,
0.06211053370300269099319149531, 2.00736597968515148287647716497, 3.56607871501856589889877774450, 4.39115417714864633834381833809, 5.71693051147059081502265432133, 6.23685991520938473064640110860, 7.50381377868132041579950766258, 8.156257284375563873421612684532, 9.331807243922318950289728518739, 10.06507491731536067071844657888