L(s) = 1 | + (−2.16 + 1.57i)2-s + (1.60 − 4.93i)4-s + (0.946 + 0.687i)5-s + (0.309 − 0.951i)7-s + (2.64 + 8.12i)8-s − 3.13·10-s + (3.31 + 0.0332i)11-s + (1.36 − 0.989i)13-s + (0.828 + 2.54i)14-s + (−10.1 − 7.36i)16-s + (−4.52 − 3.28i)17-s + (1.34 + 4.14i)19-s + (4.91 − 3.56i)20-s + (−7.24 + 5.15i)22-s + 0.119·23-s + ⋯ |
L(s) = 1 | + (−1.53 + 1.11i)2-s + (0.801 − 2.46i)4-s + (0.423 + 0.307i)5-s + (0.116 − 0.359i)7-s + (0.933 + 2.87i)8-s − 0.992·10-s + (0.999 + 0.0100i)11-s + (0.377 − 0.274i)13-s + (0.221 + 0.681i)14-s + (−2.53 − 1.84i)16-s + (−1.09 − 0.797i)17-s + (0.308 + 0.950i)19-s + (1.09 − 0.797i)20-s + (−1.54 + 1.09i)22-s + 0.0249·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.828 - 0.560i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.828 - 0.560i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.766090 + 0.234680i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.766090 + 0.234680i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (-3.31 - 0.0332i)T \) |
good | 2 | \( 1 + (2.16 - 1.57i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-0.946 - 0.687i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (-1.36 + 0.989i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (4.52 + 3.28i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.34 - 4.14i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 0.119T + 23T^{2} \) |
| 29 | \( 1 + (-1.35 + 4.18i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.10 + 3.71i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.80 + 5.56i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.40 - 10.4i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 5.97T + 43T^{2} \) |
| 47 | \( 1 + (3.88 + 11.9i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.337 + 0.245i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.223 + 0.688i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.16 - 5.20i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 8.78T + 67T^{2} \) |
| 71 | \( 1 + (-2.59 - 1.88i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (4.50 - 13.8i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (11.7 - 8.50i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (2.79 + 2.03i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 12.0T + 89T^{2} \) |
| 97 | \( 1 + (-4.85 + 3.52i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01556123185851806720302416348, −9.718669392792579032140081459985, −8.707417579188163167979818101866, −8.031971517775735823446822610128, −7.06926807278559182820884950947, −6.40103396870981102275331658760, −5.69609889909600503504544883253, −4.28669975876020865066540446818, −2.26417097098117036783469837799, −0.870390150104786361044980200208,
1.16091146925074487161667614600, 2.14938157239672827816254389845, 3.36627286710029670828603764490, 4.55334925614743502172767898110, 6.26568889539609276646858333811, 7.11805223836924605309123476807, 8.260477239793071898488347268690, 9.092539660443977554399264856631, 9.219979525033223109108552599301, 10.37281354811190948018766427285