L(s) = 1 | + (−2.16 + 1.57i)2-s + (1.60 − 4.93i)4-s + (0.946 + 0.687i)5-s + (0.309 − 0.951i)7-s + (2.64 + 8.12i)8-s − 3.13·10-s + (3.31 + 0.0332i)11-s + (1.36 − 0.989i)13-s + (0.828 + 2.54i)14-s + (−10.1 − 7.36i)16-s + (−4.52 − 3.28i)17-s + (1.34 + 4.14i)19-s + (4.91 − 3.56i)20-s + (−7.24 + 5.15i)22-s + 0.119·23-s + ⋯ |
L(s) = 1 | + (−1.53 + 1.11i)2-s + (0.801 − 2.46i)4-s + (0.423 + 0.307i)5-s + (0.116 − 0.359i)7-s + (0.933 + 2.87i)8-s − 0.992·10-s + (0.999 + 0.0100i)11-s + (0.377 − 0.274i)13-s + (0.221 + 0.681i)14-s + (−2.53 − 1.84i)16-s + (−1.09 − 0.797i)17-s + (0.308 + 0.950i)19-s + (1.09 − 0.797i)20-s + (−1.54 + 1.09i)22-s + 0.0249·23-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(0.828−0.560i)Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)(0.828−0.560i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.828−0.560i
|
Analytic conductor: |
5.53363 |
Root analytic conductor: |
2.35236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :1/2), 0.828−0.560i)
|
Particular Values
L(1) |
≈ |
0.766090+0.234680i |
L(21) |
≈ |
0.766090+0.234680i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.309+0.951i)T |
| 11 | 1+(−3.31−0.0332i)T |
good | 2 | 1+(2.16−1.57i)T+(0.618−1.90i)T2 |
| 5 | 1+(−0.946−0.687i)T+(1.54+4.75i)T2 |
| 13 | 1+(−1.36+0.989i)T+(4.01−12.3i)T2 |
| 17 | 1+(4.52+3.28i)T+(5.25+16.1i)T2 |
| 19 | 1+(−1.34−4.14i)T+(−15.3+11.1i)T2 |
| 23 | 1−0.119T+23T2 |
| 29 | 1+(−1.35+4.18i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−5.10+3.71i)T+(9.57−29.4i)T2 |
| 37 | 1+(−1.80+5.56i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−3.40−10.4i)T+(−33.1+24.0i)T2 |
| 43 | 1−5.97T+43T2 |
| 47 | 1+(3.88+11.9i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−0.337+0.245i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.223+0.688i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−7.16−5.20i)T+(18.8+58.0i)T2 |
| 67 | 1−8.78T+67T2 |
| 71 | 1+(−2.59−1.88i)T+(21.9+67.5i)T2 |
| 73 | 1+(4.50−13.8i)T+(−59.0−42.9i)T2 |
| 79 | 1+(11.7−8.50i)T+(24.4−75.1i)T2 |
| 83 | 1+(2.79+2.03i)T+(25.6+78.9i)T2 |
| 89 | 1−12.0T+89T2 |
| 97 | 1+(−4.85+3.52i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01556123185851806720302416348, −9.718669392792579032140081459985, −8.707417579188163167979818101866, −8.031971517775735823446822610128, −7.06926807278559182820884950947, −6.40103396870981102275331658760, −5.69609889909600503504544883253, −4.28669975876020865066540446818, −2.26417097098117036783469837799, −0.870390150104786361044980200208,
1.16091146925074487161667614600, 2.14938157239672827816254389845, 3.36627286710029670828603764490, 4.55334925614743502172767898110, 6.26568889539609276646858333811, 7.11805223836924605309123476807, 8.260477239793071898488347268690, 9.092539660443977554399264856631, 9.219979525033223109108552599301, 10.37281354811190948018766427285