L(s) = 1 | + (−0.614 + 0.446i)2-s + (−0.439 + 1.35i)4-s + (2.31 + 1.68i)5-s + (0.309 − 0.951i)7-s + (−0.803 − 2.47i)8-s − 2.17·10-s + (3.15 − 1.01i)11-s + (5.63 − 4.09i)13-s + (0.234 + 0.722i)14-s + (−0.706 − 0.512i)16-s + (5.38 + 3.91i)17-s + (−1.77 − 5.46i)19-s + (−3.29 + 2.39i)20-s + (−1.48 + 2.03i)22-s + 0.724·23-s + ⋯ |
L(s) = 1 | + (−0.434 + 0.315i)2-s + (−0.219 + 0.676i)4-s + (1.03 + 0.753i)5-s + (0.116 − 0.359i)7-s + (−0.284 − 0.874i)8-s − 0.688·10-s + (0.952 − 0.304i)11-s + (1.56 − 1.13i)13-s + (0.0627 + 0.193i)14-s + (−0.176 − 0.128i)16-s + (1.30 + 0.949i)17-s + (−0.407 − 1.25i)19-s + (−0.737 + 0.536i)20-s + (−0.317 + 0.432i)22-s + 0.151·23-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(0.610−0.792i)Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)(0.610−0.792i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.610−0.792i
|
Analytic conductor: |
5.53363 |
Root analytic conductor: |
2.35236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :1/2), 0.610−0.792i)
|
Particular Values
L(1) |
≈ |
1.37010+0.673864i |
L(21) |
≈ |
1.37010+0.673864i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.309+0.951i)T |
| 11 | 1+(−3.15+1.01i)T |
good | 2 | 1+(0.614−0.446i)T+(0.618−1.90i)T2 |
| 5 | 1+(−2.31−1.68i)T+(1.54+4.75i)T2 |
| 13 | 1+(−5.63+4.09i)T+(4.01−12.3i)T2 |
| 17 | 1+(−5.38−3.91i)T+(5.25+16.1i)T2 |
| 19 | 1+(1.77+5.46i)T+(−15.3+11.1i)T2 |
| 23 | 1−0.724T+23T2 |
| 29 | 1+(2.33−7.19i)T+(−23.4−17.0i)T2 |
| 31 | 1+(2.28−1.65i)T+(9.57−29.4i)T2 |
| 37 | 1+(0.532−1.63i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.346+1.06i)T+(−33.1+24.0i)T2 |
| 43 | 1+11.7T+43T2 |
| 47 | 1+(1.60+4.93i)T+(−38.0+27.6i)T2 |
| 53 | 1+(5.06−3.67i)T+(16.3−50.4i)T2 |
| 59 | 1+(1.23−3.78i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−4.83−3.50i)T+(18.8+58.0i)T2 |
| 67 | 1−10.3T+67T2 |
| 71 | 1+(0.805+0.584i)T+(21.9+67.5i)T2 |
| 73 | 1+(−1.09+3.36i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−0.541+0.393i)T+(24.4−75.1i)T2 |
| 83 | 1+(−10.8−7.89i)T+(25.6+78.9i)T2 |
| 89 | 1+16.6T+89T2 |
| 97 | 1+(8.18−5.94i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52726913100479488246153696953, −9.679445560987326568134426414796, −8.737635349656669039334618108167, −8.160915595911150230607768805887, −6.95691092737243736120831128571, −6.39596994044604731786996918108, −5.40870005532255801214229598385, −3.74358575587652294465101539353, −3.14629887081456028565227619477, −1.30537755849473125616633297092,
1.29969902137028553334864517190, 1.90624763737157694056633478086, 3.80841958972737565493144475825, 5.03432377327897480335653474978, 5.87416278860266605612519443467, 6.46926367119918212799016704575, 8.118065229101272692107462559413, 8.896868223333820564106963487790, 9.604903369872183652021395598878, 9.916921246119873881884918585926