L(s) = 1 | + (−0.614 + 0.446i)2-s + (−0.439 + 1.35i)4-s + (2.31 + 1.68i)5-s + (0.309 − 0.951i)7-s + (−0.803 − 2.47i)8-s − 2.17·10-s + (3.15 − 1.01i)11-s + (5.63 − 4.09i)13-s + (0.234 + 0.722i)14-s + (−0.706 − 0.512i)16-s + (5.38 + 3.91i)17-s + (−1.77 − 5.46i)19-s + (−3.29 + 2.39i)20-s + (−1.48 + 2.03i)22-s + 0.724·23-s + ⋯ |
L(s) = 1 | + (−0.434 + 0.315i)2-s + (−0.219 + 0.676i)4-s + (1.03 + 0.753i)5-s + (0.116 − 0.359i)7-s + (−0.284 − 0.874i)8-s − 0.688·10-s + (0.952 − 0.304i)11-s + (1.56 − 1.13i)13-s + (0.0627 + 0.193i)14-s + (−0.176 − 0.128i)16-s + (1.30 + 0.949i)17-s + (−0.407 − 1.25i)19-s + (−0.737 + 0.536i)20-s + (−0.317 + 0.432i)22-s + 0.151·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.610 - 0.792i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.610 - 0.792i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37010 + 0.673864i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37010 + 0.673864i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (-3.15 + 1.01i)T \) |
good | 2 | \( 1 + (0.614 - 0.446i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-2.31 - 1.68i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (-5.63 + 4.09i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-5.38 - 3.91i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.77 + 5.46i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 0.724T + 23T^{2} \) |
| 29 | \( 1 + (2.33 - 7.19i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.28 - 1.65i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.532 - 1.63i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.346 + 1.06i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 11.7T + 43T^{2} \) |
| 47 | \( 1 + (1.60 + 4.93i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (5.06 - 3.67i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.23 - 3.78i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-4.83 - 3.50i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 10.3T + 67T^{2} \) |
| 71 | \( 1 + (0.805 + 0.584i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.09 + 3.36i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-0.541 + 0.393i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-10.8 - 7.89i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 16.6T + 89T^{2} \) |
| 97 | \( 1 + (8.18 - 5.94i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52726913100479488246153696953, −9.679445560987326568134426414796, −8.737635349656669039334618108167, −8.160915595911150230607768805887, −6.95691092737243736120831128571, −6.39596994044604731786996918108, −5.40870005532255801214229598385, −3.74358575587652294465101539353, −3.14629887081456028565227619477, −1.30537755849473125616633297092,
1.29969902137028553334864517190, 1.90624763737157694056633478086, 3.80841958972737565493144475825, 5.03432377327897480335653474978, 5.87416278860266605612519443467, 6.46926367119918212799016704575, 8.118065229101272692107462559413, 8.896868223333820564106963487790, 9.604903369872183652021395598878, 9.916921246119873881884918585926