L(s) = 1 | + (1.99 − 1.44i)2-s + (1.26 − 3.88i)4-s + (−2.80 − 2.03i)5-s + (−0.309 + 0.951i)7-s + (−1.58 − 4.89i)8-s − 8.55·10-s + (−2.91 − 1.57i)11-s + (0.528 − 0.384i)13-s + (0.762 + 2.34i)14-s + (−3.65 − 2.65i)16-s + (−0.919 − 0.668i)17-s + (−1.87 − 5.77i)19-s + (−11.4 + 8.32i)20-s + (−8.10 + 1.09i)22-s + 6.66·23-s + ⋯ |
L(s) = 1 | + (1.41 − 1.02i)2-s + (0.631 − 1.94i)4-s + (−1.25 − 0.911i)5-s + (−0.116 + 0.359i)7-s + (−0.561 − 1.72i)8-s − 2.70·10-s + (−0.880 − 0.474i)11-s + (0.146 − 0.106i)13-s + (0.203 + 0.626i)14-s + (−0.913 − 0.663i)16-s + (−0.223 − 0.162i)17-s + (−0.430 − 1.32i)19-s + (−2.56 + 1.86i)20-s + (−1.72 + 0.233i)22-s + 1.39·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 + 0.110i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.993 + 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.119979 - 2.17002i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.119979 - 2.17002i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (2.91 + 1.57i)T \) |
good | 2 | \( 1 + (-1.99 + 1.44i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (2.80 + 2.03i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (-0.528 + 0.384i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.919 + 0.668i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.87 + 5.77i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 6.66T + 23T^{2} \) |
| 29 | \( 1 + (-1.41 + 4.34i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.26 - 1.64i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.135 - 0.418i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.82 - 5.61i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 8.70T + 43T^{2} \) |
| 47 | \( 1 + (-0.186 - 0.575i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-7.94 + 5.77i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.523 - 1.61i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (5.54 + 4.03i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 6.17T + 67T^{2} \) |
| 71 | \( 1 + (4.38 + 3.18i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.07 + 6.37i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (2.14 - 1.55i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-5.41 - 3.93i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 0.698T + 89T^{2} \) |
| 97 | \( 1 + (-12.0 + 8.73i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57946830744356126212923265588, −9.227682530114262704464120121077, −8.440841039738486025761312208183, −7.35145262198676237215281654312, −6.04537737810462681825168430192, −4.97841851917790828685264431259, −4.55213339203988183233421395176, −3.42056539807196959003015278642, −2.53480934452181999891785586063, −0.72533052911107032105685989721,
2.77974087146392383975292270184, 3.71409200889205907212782224593, 4.38249352175883858580943537710, 5.47938127583271953514765118478, 6.48971547976662497083894798769, 7.40776487684974797565878636455, 7.58453044647223899253709286626, 8.732443189655097592092963263833, 10.40262453769198955292205392286, 10.97322453602633590430554953858