L(s) = 1 | + (1.44 + 1.04i)2-s + (0.672 + 2.06i)4-s + (−0.951 + 0.309i)7-s + (−0.647 + 1.99i)8-s + (0.156 − 0.987i)11-s + (−1.69 − 0.550i)14-s + (−1.26 + 0.915i)16-s + (1.26 − 1.26i)22-s − 0.907i·23-s + (−0.309 + 0.951i)25-s + (−1.27 − 1.76i)28-s + (−0.610 − 1.87i)29-s − 0.680·32-s + (0.587 + 1.80i)37-s − 1.61i·43-s + (2.14 − 0.340i)44-s + ⋯ |
L(s) = 1 | + (1.44 + 1.04i)2-s + (0.672 + 2.06i)4-s + (−0.951 + 0.309i)7-s + (−0.647 + 1.99i)8-s + (0.156 − 0.987i)11-s + (−1.69 − 0.550i)14-s + (−1.26 + 0.915i)16-s + (1.26 − 1.26i)22-s − 0.907i·23-s + (−0.309 + 0.951i)25-s + (−1.27 − 1.76i)28-s + (−0.610 − 1.87i)29-s − 0.680·32-s + (0.587 + 1.80i)37-s − 1.61i·43-s + (2.14 − 0.340i)44-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(−0.0746−0.997i)Λ(1−s)
Λ(s)=(=(693s/2ΓC(s)L(s)(−0.0746−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
−0.0746−0.997i
|
Analytic conductor: |
0.345852 |
Root analytic conductor: |
0.588091 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(62,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :0), −0.0746−0.997i)
|
Particular Values
L(21) |
≈ |
1.805884393 |
L(21) |
≈ |
1.805884393 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(0.951−0.309i)T |
| 11 | 1+(−0.156+0.987i)T |
good | 2 | 1+(−1.44−1.04i)T+(0.309+0.951i)T2 |
| 5 | 1+(0.309−0.951i)T2 |
| 13 | 1+(0.309+0.951i)T2 |
| 17 | 1+(−0.309+0.951i)T2 |
| 19 | 1+(−0.809−0.587i)T2 |
| 23 | 1+0.907iT−T2 |
| 29 | 1+(0.610+1.87i)T+(−0.809+0.587i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(−0.587−1.80i)T+(−0.809+0.587i)T2 |
| 41 | 1+(0.809+0.587i)T2 |
| 43 | 1+1.61iT−T2 |
| 47 | 1+(−0.809−0.587i)T2 |
| 53 | 1+(1.16−1.59i)T+(−0.309−0.951i)T2 |
| 59 | 1+(−0.809+0.587i)T2 |
| 61 | 1+(0.309−0.951i)T2 |
| 67 | 1+1.61T+T2 |
| 71 | 1+(0.183+0.253i)T+(−0.309+0.951i)T2 |
| 73 | 1+(−0.809+0.587i)T2 |
| 79 | 1+(0.690−0.951i)T+(−0.309−0.951i)T2 |
| 83 | 1+(−0.309+0.951i)T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25965491571078143744383333678, −9.990883115186801755959936968465, −8.919305908358385731978524818982, −8.016599392683447054595319772026, −7.08552178878075303428054059816, −6.13358018807343265620708184832, −5.80553046026705462399899002223, −4.56478611545197006528119498634, −3.60082808420528854247720005839, −2.74640021440156624103945150881,
1.71686687436873811534454076603, 2.95567458311936212579182386401, 3.83084456724513718354492078213, 4.69571426433541109716661727702, 5.71668115527645180705147482405, 6.59335445368470888233751291219, 7.53069221987970826876998788481, 9.210275745185808957845173796959, 9.884532493081300679133753244821, 10.64299459938258088785807595264