L(s) = 1 | + (1.44 + 1.04i)2-s + (0.672 + 2.06i)4-s + (−0.951 + 0.309i)7-s + (−0.647 + 1.99i)8-s + (0.156 − 0.987i)11-s + (−1.69 − 0.550i)14-s + (−1.26 + 0.915i)16-s + (1.26 − 1.26i)22-s − 0.907i·23-s + (−0.309 + 0.951i)25-s + (−1.27 − 1.76i)28-s + (−0.610 − 1.87i)29-s − 0.680·32-s + (0.587 + 1.80i)37-s − 1.61i·43-s + (2.14 − 0.340i)44-s + ⋯ |
L(s) = 1 | + (1.44 + 1.04i)2-s + (0.672 + 2.06i)4-s + (−0.951 + 0.309i)7-s + (−0.647 + 1.99i)8-s + (0.156 − 0.987i)11-s + (−1.69 − 0.550i)14-s + (−1.26 + 0.915i)16-s + (1.26 − 1.26i)22-s − 0.907i·23-s + (−0.309 + 0.951i)25-s + (−1.27 − 1.76i)28-s + (−0.610 − 1.87i)29-s − 0.680·32-s + (0.587 + 1.80i)37-s − 1.61i·43-s + (2.14 − 0.340i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0746 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0746 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.805884393\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.805884393\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.951 - 0.309i)T \) |
| 11 | \( 1 + (-0.156 + 0.987i)T \) |
good | 2 | \( 1 + (-1.44 - 1.04i)T + (0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + 0.907iT - T^{2} \) |
| 29 | \( 1 + (0.610 + 1.87i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.587 - 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + 1.61iT - T^{2} \) |
| 47 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (1.16 - 1.59i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + (0.183 + 0.253i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.25965491571078143744383333678, −9.990883115186801755959936968465, −8.919305908358385731978524818982, −8.016599392683447054595319772026, −7.08552178878075303428054059816, −6.13358018807343265620708184832, −5.80553046026705462399899002223, −4.56478611545197006528119498634, −3.60082808420528854247720005839, −2.74640021440156624103945150881,
1.71686687436873811534454076603, 2.95567458311936212579182386401, 3.83084456724513718354492078213, 4.69571426433541109716661727702, 5.71668115527645180705147482405, 6.59335445368470888233751291219, 7.53069221987970826876998788481, 9.210275745185808957845173796959, 9.884532493081300679133753244821, 10.64299459938258088785807595264