L(s) = 1 | + 0.896i·5-s + 3.19·13-s − 8.24i·17-s + 4.19·25-s + 6.45i·29-s + 9.39·37-s + 12.7i·41-s + 7·49-s − 12.7i·53-s + 15.3·61-s + 2.86i·65-s − 2.80·73-s + 7.39·85-s − 13.8i·89-s − 8·97-s + ⋯ |
L(s) = 1 | + 0.400i·5-s + 0.886·13-s − 1.99i·17-s + 0.839·25-s + 1.19i·29-s + 1.54·37-s + 1.98i·41-s + 49-s − 1.74i·53-s + 1.97·61-s + 0.355i·65-s − 0.328·73-s + 0.801·85-s − 1.46i·89-s − 0.812·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.735691755\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.735691755\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 0.896iT - 5T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 3.19T + 13T^{2} \) |
| 17 | \( 1 + 8.24iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 6.45iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 - 9.39T + 37T^{2} \) |
| 41 | \( 1 - 12.7iT - 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 12.7iT - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 15.3T + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 2.80T + 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + 13.8iT - 89T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.621343631915807397375417258919, −8.910448690739695502978971615197, −8.028898592465782231154054654612, −7.09470047279332660367810644351, −6.50630169856512273080356922173, −5.41314369409222650548641678811, −4.59545733509252372833798654646, −3.38231779277823631748135116234, −2.57400704307847315821371629803, −0.980946675843082555455559878992,
1.05697479154615163147848532844, 2.31970741562293803614259658382, 3.73338923349036200463927854553, 4.34687651923312873619503153802, 5.65949449738204748271313028651, 6.16183749886901216457238240670, 7.23629684364117969840405342876, 8.265858805314398890881117614640, 8.668524257191216600906393757607, 9.622085922899466763630810063379