L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.258 − 0.965i)5-s + (0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s − i·10-s + (−0.965 − 0.258i)11-s + (−0.366 − 1.36i)13-s + (0.965 − 0.258i)14-s + (0.500 + 0.866i)16-s + 1.41i·17-s + (0.258 − 0.965i)20-s + (−0.866 − 0.499i)22-s − 1.41i·26-s + 28-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.258 − 0.965i)5-s + (0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s − i·10-s + (−0.965 − 0.258i)11-s + (−0.366 − 1.36i)13-s + (0.965 − 0.258i)14-s + (0.500 + 0.866i)16-s + 1.41i·17-s + (0.258 − 0.965i)20-s + (−0.866 − 0.499i)22-s − 1.41i·26-s + 28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 + 0.216i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 + 0.216i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.912877195\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.912877195\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 13 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - 1.41iT - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11104662206574785398004058619, −8.537921870377032399430259036189, −8.084903358587861569480669274068, −7.55869747560813391438125119577, −6.32104658030097408435492958392, −5.29992101021058243909084336331, −4.92091984394789219007278782743, −3.95050538779211238528314418724, −2.89117696893927574312423034488, −1.46333307752909218992550674978,
2.03216965210974710039802786637, 2.66758290814143449587328425215, 3.82483152062545842652241371049, 4.88557001036998110086296712836, 5.39113785547304746867545729560, 6.68832269543377671206814845148, 7.16910999848109932751713066395, 7.993216446772210206501373143698, 9.254346425281483725846433194605, 10.07838394964023082931802188961