Properties

Label 2-70-1.1-c3-0-2
Degree $2$
Conductor $70$
Sign $1$
Analytic cond. $4.13013$
Root an. cond. $2.03227$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 5·3-s + 4·4-s + 5·5-s + 10·6-s − 7·7-s + 8·8-s − 2·9-s + 10·10-s − 11-s + 20·12-s + 7·13-s − 14·14-s + 25·15-s + 16·16-s − 51·17-s − 4·18-s + 30·19-s + 20·20-s − 35·21-s − 2·22-s − 50·23-s + 40·24-s + 25·25-s + 14·26-s − 145·27-s − 28·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.962·3-s + 1/2·4-s + 0.447·5-s + 0.680·6-s − 0.377·7-s + 0.353·8-s − 0.0740·9-s + 0.316·10-s − 0.0274·11-s + 0.481·12-s + 0.149·13-s − 0.267·14-s + 0.430·15-s + 1/4·16-s − 0.727·17-s − 0.0523·18-s + 0.362·19-s + 0.223·20-s − 0.363·21-s − 0.0193·22-s − 0.453·23-s + 0.340·24-s + 1/5·25-s + 0.105·26-s − 1.03·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(4.13013\)
Root analytic conductor: \(2.03227\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 70,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.762972371\)
\(L(\frac12)\) \(\approx\) \(2.762972371\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 - p T \)
7 \( 1 + p T \)
good3 \( 1 - 5 T + p^{3} T^{2} \)
11 \( 1 + T + p^{3} T^{2} \)
13 \( 1 - 7 T + p^{3} T^{2} \)
17 \( 1 + 3 p T + p^{3} T^{2} \)
19 \( 1 - 30 T + p^{3} T^{2} \)
23 \( 1 + 50 T + p^{3} T^{2} \)
29 \( 1 - 79 T + p^{3} T^{2} \)
31 \( 1 + 212 T + p^{3} T^{2} \)
37 \( 1 + 190 T + p^{3} T^{2} \)
41 \( 1 + 308 T + p^{3} T^{2} \)
43 \( 1 - 422 T + p^{3} T^{2} \)
47 \( 1 - 121 T + p^{3} T^{2} \)
53 \( 1 - 664 T + p^{3} T^{2} \)
59 \( 1 - 628 T + p^{3} T^{2} \)
61 \( 1 + 684 T + p^{3} T^{2} \)
67 \( 1 - 1056 T + p^{3} T^{2} \)
71 \( 1 - 744 T + p^{3} T^{2} \)
73 \( 1 - 726 T + p^{3} T^{2} \)
79 \( 1 + 407 T + p^{3} T^{2} \)
83 \( 1 - 644 T + p^{3} T^{2} \)
89 \( 1 + 880 T + p^{3} T^{2} \)
97 \( 1 + 1351 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02877161294499100316632927655, −13.44594765697618113745660725958, −12.29312693211253801967469387058, −10.91024816717137091636211064660, −9.554797129906410198586835726130, −8.434841000984463701430404146740, −6.95881400190180065163549875993, −5.53867578225588174848636045224, −3.73453652326893131111598181444, −2.33720109746932864701269806985, 2.33720109746932864701269806985, 3.73453652326893131111598181444, 5.53867578225588174848636045224, 6.95881400190180065163549875993, 8.434841000984463701430404146740, 9.554797129906410198586835726130, 10.91024816717137091636211064660, 12.29312693211253801967469387058, 13.44594765697618113745660725958, 14.02877161294499100316632927655

Graph of the $Z$-function along the critical line