L(s) = 1 | + 2·2-s + 5·3-s + 4·4-s + 5·5-s + 10·6-s − 7·7-s + 8·8-s − 2·9-s + 10·10-s − 11-s + 20·12-s + 7·13-s − 14·14-s + 25·15-s + 16·16-s − 51·17-s − 4·18-s + 30·19-s + 20·20-s − 35·21-s − 2·22-s − 50·23-s + 40·24-s + 25·25-s + 14·26-s − 145·27-s − 28·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.962·3-s + 1/2·4-s + 0.447·5-s + 0.680·6-s − 0.377·7-s + 0.353·8-s − 0.0740·9-s + 0.316·10-s − 0.0274·11-s + 0.481·12-s + 0.149·13-s − 0.267·14-s + 0.430·15-s + 1/4·16-s − 0.727·17-s − 0.0523·18-s + 0.362·19-s + 0.223·20-s − 0.363·21-s − 0.0193·22-s − 0.453·23-s + 0.340·24-s + 1/5·25-s + 0.105·26-s − 1.03·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(70s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.762972371 |
L(21) |
≈ |
2.762972371 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−pT |
| 5 | 1−pT |
| 7 | 1+pT |
good | 3 | 1−5T+p3T2 |
| 11 | 1+T+p3T2 |
| 13 | 1−7T+p3T2 |
| 17 | 1+3pT+p3T2 |
| 19 | 1−30T+p3T2 |
| 23 | 1+50T+p3T2 |
| 29 | 1−79T+p3T2 |
| 31 | 1+212T+p3T2 |
| 37 | 1+190T+p3T2 |
| 41 | 1+308T+p3T2 |
| 43 | 1−422T+p3T2 |
| 47 | 1−121T+p3T2 |
| 53 | 1−664T+p3T2 |
| 59 | 1−628T+p3T2 |
| 61 | 1+684T+p3T2 |
| 67 | 1−1056T+p3T2 |
| 71 | 1−744T+p3T2 |
| 73 | 1−726T+p3T2 |
| 79 | 1+407T+p3T2 |
| 83 | 1−644T+p3T2 |
| 89 | 1+880T+p3T2 |
| 97 | 1+1351T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.02877161294499100316632927655, −13.44594765697618113745660725958, −12.29312693211253801967469387058, −10.91024816717137091636211064660, −9.554797129906410198586835726130, −8.434841000984463701430404146740, −6.95881400190180065163549875993, −5.53867578225588174848636045224, −3.73453652326893131111598181444, −2.33720109746932864701269806985,
2.33720109746932864701269806985, 3.73453652326893131111598181444, 5.53867578225588174848636045224, 6.95881400190180065163549875993, 8.434841000984463701430404146740, 9.554797129906410198586835726130, 10.91024816717137091636211064660, 12.29312693211253801967469387058, 13.44594765697618113745660725958, 14.02877161294499100316632927655