L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.523 − 1.95i)3-s + (0.866 − 0.499i)4-s + (−2.03 − 0.935i)5-s + 2.02i·6-s + (1.83 − 1.90i)7-s + (−0.707 + 0.707i)8-s + (−0.941 − 0.543i)9-s + (2.20 + 0.378i)10-s + (2.01 + 3.49i)11-s + (−0.523 − 1.95i)12-s + (0.204 + 0.204i)13-s + (−1.28 + 2.31i)14-s + (−2.89 + 3.47i)15-s + (0.500 − 0.866i)16-s + (−1.97 − 0.527i)17-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.302 − 1.12i)3-s + (0.433 − 0.249i)4-s + (−0.908 − 0.418i)5-s + 0.825i·6-s + (0.695 − 0.718i)7-s + (−0.249 + 0.249i)8-s + (−0.313 − 0.181i)9-s + (0.696 + 0.119i)10-s + (0.609 + 1.05i)11-s + (−0.151 − 0.563i)12-s + (0.0568 + 0.0568i)13-s + (−0.343 + 0.618i)14-s + (−0.746 + 0.897i)15-s + (0.125 − 0.216i)16-s + (−0.477 − 0.128i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.509 + 0.860i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.509 + 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.622454 - 0.354602i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.622454 - 0.354602i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 - 0.258i)T \) |
| 5 | \( 1 + (2.03 + 0.935i)T \) |
| 7 | \( 1 + (-1.83 + 1.90i)T \) |
good | 3 | \( 1 + (-0.523 + 1.95i)T + (-2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (-2.01 - 3.49i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.204 - 0.204i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.97 + 0.527i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (3.10 - 5.37i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.17 - 4.38i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 7.15iT - 29T^{2} \) |
| 31 | \( 1 + (-6.33 + 3.65i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.46 - 1.19i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 2.58iT - 41T^{2} \) |
| 43 | \( 1 + (4.97 - 4.97i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.0815 + 0.304i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (8.00 + 2.14i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-0.427 - 0.740i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.99 + 3.46i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.817 - 3.05i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 7.12T + 71T^{2} \) |
| 73 | \( 1 + (2.98 - 11.1i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (4.39 + 2.53i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.85 + 3.85i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.53 - 2.66i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.63 - 6.63i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.60890409366785953523866453667, −13.39635362248342307623637135421, −12.24209159715530163845724630915, −11.38988144769205107773740841200, −9.878522828395303252848506428670, −8.286034516612125050687061433734, −7.68324315817142882728372994284, −6.67808905485602647026870735832, −4.36288301637604859248062731712, −1.57751405592454151361540136058,
3.13904817475299052291053449971, 4.63057072172908045307350318820, 6.73844098056840480408485539956, 8.522977572268320191167320686536, 8.908677182057046311054470353093, 10.60151321426083269417982551579, 11.16181088725231799729047903862, 12.31274380923542050071877369425, 14.24219474580634956196800206242, 15.22918413582414997142984669262