L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.523 − 1.95i)3-s + (0.866 − 0.499i)4-s + (−2.03 − 0.935i)5-s + 2.02i·6-s + (1.83 − 1.90i)7-s + (−0.707 + 0.707i)8-s + (−0.941 − 0.543i)9-s + (2.20 + 0.378i)10-s + (2.01 + 3.49i)11-s + (−0.523 − 1.95i)12-s + (0.204 + 0.204i)13-s + (−1.28 + 2.31i)14-s + (−2.89 + 3.47i)15-s + (0.500 − 0.866i)16-s + (−1.97 − 0.527i)17-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.302 − 1.12i)3-s + (0.433 − 0.249i)4-s + (−0.908 − 0.418i)5-s + 0.825i·6-s + (0.695 − 0.718i)7-s + (−0.249 + 0.249i)8-s + (−0.313 − 0.181i)9-s + (0.696 + 0.119i)10-s + (0.609 + 1.05i)11-s + (−0.151 − 0.563i)12-s + (0.0568 + 0.0568i)13-s + (−0.343 + 0.618i)14-s + (−0.746 + 0.897i)15-s + (0.125 − 0.216i)16-s + (−0.477 − 0.128i)17-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.509+0.860i)Λ(2−s)
Λ(s)=(=(70s/2ΓC(s+1/2)L(s)(0.509+0.860i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.509+0.860i
|
Analytic conductor: |
0.558952 |
Root analytic conductor: |
0.747631 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1/2), 0.509+0.860i)
|
Particular Values
L(1) |
≈ |
0.622454−0.354602i |
L(21) |
≈ |
0.622454−0.354602i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965−0.258i)T |
| 5 | 1+(2.03+0.935i)T |
| 7 | 1+(−1.83+1.90i)T |
good | 3 | 1+(−0.523+1.95i)T+(−2.59−1.5i)T2 |
| 11 | 1+(−2.01−3.49i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−0.204−0.204i)T+13iT2 |
| 17 | 1+(1.97+0.527i)T+(14.7+8.5i)T2 |
| 19 | 1+(3.10−5.37i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.17−4.38i)T+(−19.9+11.5i)T2 |
| 29 | 1+7.15iT−29T2 |
| 31 | 1+(−6.33+3.65i)T+(15.5−26.8i)T2 |
| 37 | 1+(4.46−1.19i)T+(32.0−18.5i)T2 |
| 41 | 1−2.58iT−41T2 |
| 43 | 1+(4.97−4.97i)T−43iT2 |
| 47 | 1+(0.0815+0.304i)T+(−40.7+23.5i)T2 |
| 53 | 1+(8.00+2.14i)T+(45.8+26.5i)T2 |
| 59 | 1+(−0.427−0.740i)T+(−29.5+51.0i)T2 |
| 61 | 1+(5.99+3.46i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.817−3.05i)T+(−58.0−33.5i)T2 |
| 71 | 1−7.12T+71T2 |
| 73 | 1+(2.98−11.1i)T+(−63.2−36.5i)T2 |
| 79 | 1+(4.39+2.53i)T+(39.5+68.4i)T2 |
| 83 | 1+(3.85+3.85i)T+83iT2 |
| 89 | 1+(1.53−2.66i)T+(−44.5−77.0i)T2 |
| 97 | 1+(6.63−6.63i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.60890409366785953523866453667, −13.39635362248342307623637135421, −12.24209159715530163845724630915, −11.38988144769205107773740841200, −9.878522828395303252848506428670, −8.286034516612125050687061433734, −7.68324315817142882728372994284, −6.67808905485602647026870735832, −4.36288301637604859248062731712, −1.57751405592454151361540136058,
3.13904817475299052291053449971, 4.63057072172908045307350318820, 6.73844098056840480408485539956, 8.522977572268320191167320686536, 8.908677182057046311054470353093, 10.60151321426083269417982551579, 11.16181088725231799729047903862, 12.31274380923542050071877369425, 14.24219474580634956196800206242, 15.22918413582414997142984669262