L(s) = 1 | + (1.36 + 0.366i)2-s + (−5.10 + 1.36i)3-s + (1.73 + i)4-s + (−1.96 + 4.59i)5-s − 7.47·6-s + (−6.41 + 2.80i)7-s + (1.99 + 2i)8-s + (16.4 − 9.47i)9-s + (−4.36 + 5.56i)10-s + (−1.73 + 3.01i)11-s + (−10.2 − 2.73i)12-s + (10.9 + 10.9i)13-s + (−9.78 + 1.47i)14-s + (3.73 − 26.1i)15-s + (1.99 + 3.46i)16-s + (−2.54 − 9.49i)17-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (−1.70 + 0.456i)3-s + (0.433 + 0.250i)4-s + (−0.392 + 0.919i)5-s − 1.24·6-s + (−0.916 + 0.400i)7-s + (0.249 + 0.250i)8-s + (1.82 − 1.05i)9-s + (−0.436 + 0.556i)10-s + (−0.158 + 0.273i)11-s + (−0.851 − 0.228i)12-s + (0.842 + 0.842i)13-s + (−0.699 + 0.105i)14-s + (0.249 − 1.74i)15-s + (0.124 + 0.216i)16-s + (−0.149 − 0.558i)17-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(−0.644−0.764i)Λ(3−s)
Λ(s)=(=(70s/2ΓC(s+1)L(s)(−0.644−0.764i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
−0.644−0.764i
|
Analytic conductor: |
1.90736 |
Root analytic conductor: |
1.38107 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1), −0.644−0.764i)
|
Particular Values
L(23) |
≈ |
0.346080+0.743919i |
L(21) |
≈ |
0.346080+0.743919i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36−0.366i)T |
| 5 | 1+(1.96−4.59i)T |
| 7 | 1+(6.41−2.80i)T |
good | 3 | 1+(5.10−1.36i)T+(7.79−4.5i)T2 |
| 11 | 1+(1.73−3.01i)T+(−60.5−104.i)T2 |
| 13 | 1+(−10.9−10.9i)T+169iT2 |
| 17 | 1+(2.54+9.49i)T+(−250.+144.5i)T2 |
| 19 | 1+(−15.9+9.21i)T+(180.5−312.i)T2 |
| 23 | 1+(4.64−17.3i)T+(−458.−264.5i)T2 |
| 29 | 1−49.8iT−841T2 |
| 31 | 1+(8−13.8i)T+(−480.5−832.i)T2 |
| 37 | 1+(−34.2−9.16i)T+(1.18e3+684.5i)T2 |
| 41 | 1+6.04T+1.68e3T2 |
| 43 | 1+(9.64+9.64i)T+1.84e3iT2 |
| 47 | 1+(20.3+5.44i)T+(1.91e3+1.10e3i)T2 |
| 53 | 1+(−10.9+2.94i)T+(2.43e3−1.40e3i)T2 |
| 59 | 1+(−65.3−37.7i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(51.4+89.1i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(8.33+31.1i)T+(−3.88e3+2.24e3i)T2 |
| 71 | 1−40.3T+5.04e3T2 |
| 73 | 1+(−85.7+22.9i)T+(4.61e3−2.66e3i)T2 |
| 79 | 1+(−87.6+50.6i)T+(3.12e3−5.40e3i)T2 |
| 83 | 1+(−51.1−51.1i)T+6.88e3iT2 |
| 89 | 1+(71.6−41.3i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(−45.7+45.7i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.18085707329436084179514678990, −13.69045125919544770859895652127, −12.38466225653843643190713837271, −11.54516519336027384095024019374, −10.81720255611793575213223692983, −9.550253823048233940851589460999, −7.05431888732550479459770588833, −6.34668454974522843695412420526, −5.12132010678239212373124961946, −3.55668901443372245323589294887,
0.73756352145498310504947208972, 4.06551705740924862542412377917, 5.54202476405790014026715186385, 6.31720730031604419424802306126, 7.84694677599315320243156362139, 9.981597865301497605769947742289, 11.06880734278230096222867378376, 12.00753600113023323191495236438, 12.88605638794226141721781754304, 13.40535885205262125836358771150