L(s) = 1 | + (−1.36 − 0.366i)2-s + (−5.05 + 1.35i)3-s + (1.73 + i)4-s + (4.84 − 1.23i)5-s + 7.39·6-s + (1.26 − 6.88i)7-s + (−1.99 − 2i)8-s + (15.8 − 9.16i)9-s + (−7.07 − 0.0936i)10-s + (5.56 − 9.64i)11-s + (−10.1 − 2.70i)12-s + (9.62 + 9.62i)13-s + (−4.25 + 8.94i)14-s + (−22.8 + 12.7i)15-s + (1.99 + 3.46i)16-s + (−2.29 − 8.55i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (−1.68 + 0.451i)3-s + (0.433 + 0.250i)4-s + (0.969 − 0.246i)5-s + 1.23·6-s + (0.181 − 0.983i)7-s + (−0.249 − 0.250i)8-s + (1.76 − 1.01i)9-s + (−0.707 − 0.00936i)10-s + (0.506 − 0.876i)11-s + (−0.841 − 0.225i)12-s + (0.740 + 0.740i)13-s + (−0.303 + 0.638i)14-s + (−1.52 + 0.851i)15-s + (0.124 + 0.216i)16-s + (−0.134 − 0.503i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.687 + 0.725i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.687 + 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.592232 - 0.254662i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.592232 - 0.254662i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 + 0.366i)T \) |
| 5 | \( 1 + (-4.84 + 1.23i)T \) |
| 7 | \( 1 + (-1.26 + 6.88i)T \) |
good | 3 | \( 1 + (5.05 - 1.35i)T + (7.79 - 4.5i)T^{2} \) |
| 11 | \( 1 + (-5.56 + 9.64i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-9.62 - 9.62i)T + 169iT^{2} \) |
| 17 | \( 1 + (2.29 + 8.55i)T + (-250. + 144.5i)T^{2} \) |
| 19 | \( 1 + (5.79 - 3.34i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-7.37 + 27.5i)T + (-458. - 264.5i)T^{2} \) |
| 29 | \( 1 + 29.0iT - 841T^{2} \) |
| 31 | \( 1 + (11.9 - 20.6i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (14.9 + 4.01i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + 9.18T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-55.1 - 55.1i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-8.55 - 2.29i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-13.8 + 3.69i)T + (2.43e3 - 1.40e3i)T^{2} \) |
| 59 | \( 1 + (-67.7 - 39.1i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (10.7 + 18.5i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-13.7 - 51.3i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 101.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (101. - 27.1i)T + (4.61e3 - 2.66e3i)T^{2} \) |
| 79 | \( 1 + (11.7 - 6.81i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-28.4 - 28.4i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (6.56 - 3.78i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-74.4 + 74.4i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.23556457228354558843810188002, −13.01071172733829426726119933910, −11.65665442858456498714462306048, −10.87091066026654202247414355085, −10.10912447787739286602147395519, −8.878723893836721308077086107996, −6.80932824096324545775930108538, −5.94635534920245887400273621639, −4.35973074840989362381215496509, −0.982621961232194281795932307422,
1.66957993569840217454725678751, 5.35489780144568406195060000576, 6.08936180640168913673740925466, 7.19054181205584751045295252488, 9.013113693769120650060651668670, 10.28261093601380008383943834972, 11.15621467859496905041500501865, 12.22650033885301278133693879841, 13.15556948108208030269289117765, 14.90658029455703333613567735971