L(s) = 1 | + (−1.36 − 0.366i)2-s + (−5.05 + 1.35i)3-s + (1.73 + i)4-s + (4.84 − 1.23i)5-s + 7.39·6-s + (1.26 − 6.88i)7-s + (−1.99 − 2i)8-s + (15.8 − 9.16i)9-s + (−7.07 − 0.0936i)10-s + (5.56 − 9.64i)11-s + (−10.1 − 2.70i)12-s + (9.62 + 9.62i)13-s + (−4.25 + 8.94i)14-s + (−22.8 + 12.7i)15-s + (1.99 + 3.46i)16-s + (−2.29 − 8.55i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (−1.68 + 0.451i)3-s + (0.433 + 0.250i)4-s + (0.969 − 0.246i)5-s + 1.23·6-s + (0.181 − 0.983i)7-s + (−0.249 − 0.250i)8-s + (1.76 − 1.01i)9-s + (−0.707 − 0.00936i)10-s + (0.506 − 0.876i)11-s + (−0.841 − 0.225i)12-s + (0.740 + 0.740i)13-s + (−0.303 + 0.638i)14-s + (−1.52 + 0.851i)15-s + (0.124 + 0.216i)16-s + (−0.134 − 0.503i)17-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.687+0.725i)Λ(3−s)
Λ(s)=(=(70s/2ΓC(s+1)L(s)(0.687+0.725i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.687+0.725i
|
Analytic conductor: |
1.90736 |
Root analytic conductor: |
1.38107 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1), 0.687+0.725i)
|
Particular Values
L(23) |
≈ |
0.592232−0.254662i |
L(21) |
≈ |
0.592232−0.254662i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.36+0.366i)T |
| 5 | 1+(−4.84+1.23i)T |
| 7 | 1+(−1.26+6.88i)T |
good | 3 | 1+(5.05−1.35i)T+(7.79−4.5i)T2 |
| 11 | 1+(−5.56+9.64i)T+(−60.5−104.i)T2 |
| 13 | 1+(−9.62−9.62i)T+169iT2 |
| 17 | 1+(2.29+8.55i)T+(−250.+144.5i)T2 |
| 19 | 1+(5.79−3.34i)T+(180.5−312.i)T2 |
| 23 | 1+(−7.37+27.5i)T+(−458.−264.5i)T2 |
| 29 | 1+29.0iT−841T2 |
| 31 | 1+(11.9−20.6i)T+(−480.5−832.i)T2 |
| 37 | 1+(14.9+4.01i)T+(1.18e3+684.5i)T2 |
| 41 | 1+9.18T+1.68e3T2 |
| 43 | 1+(−55.1−55.1i)T+1.84e3iT2 |
| 47 | 1+(−8.55−2.29i)T+(1.91e3+1.10e3i)T2 |
| 53 | 1+(−13.8+3.69i)T+(2.43e3−1.40e3i)T2 |
| 59 | 1+(−67.7−39.1i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(10.7+18.5i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(−13.7−51.3i)T+(−3.88e3+2.24e3i)T2 |
| 71 | 1+101.T+5.04e3T2 |
| 73 | 1+(101.−27.1i)T+(4.61e3−2.66e3i)T2 |
| 79 | 1+(11.7−6.81i)T+(3.12e3−5.40e3i)T2 |
| 83 | 1+(−28.4−28.4i)T+6.88e3iT2 |
| 89 | 1+(6.56−3.78i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(−74.4+74.4i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.23556457228354558843810188002, −13.01071172733829426726119933910, −11.65665442858456498714462306048, −10.87091066026654202247414355085, −10.10912447787739286602147395519, −8.878723893836721308077086107996, −6.80932824096324545775930108538, −5.94635534920245887400273621639, −4.35973074840989362381215496509, −0.982621961232194281795932307422,
1.66957993569840217454725678751, 5.35489780144568406195060000576, 6.08936180640168913673740925466, 7.19054181205584751045295252488, 9.013113693769120650060651668670, 10.28261093601380008383943834972, 11.15621467859496905041500501865, 12.22650033885301278133693879841, 13.15556948108208030269289117765, 14.90658029455703333613567735971