L(s) = 1 | + (−1.36 − 0.366i)2-s + (4.90 − 1.31i)3-s + (1.73 + i)4-s + (2.86 + 4.09i)5-s − 7.18·6-s + (−6.99 + 0.145i)7-s + (−1.99 − 2i)8-s + (14.5 − 8.41i)9-s + (−2.41 − 6.64i)10-s + (0.474 − 0.821i)11-s + (9.81 + 2.63i)12-s + (0.862 + 0.862i)13-s + (9.61 + 2.36i)14-s + (19.4 + 16.3i)15-s + (1.99 + 3.46i)16-s + (−7.87 − 29.3i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (1.63 − 0.438i)3-s + (0.433 + 0.250i)4-s + (0.572 + 0.819i)5-s − 1.19·6-s + (−0.999 + 0.0207i)7-s + (−0.249 − 0.250i)8-s + (1.61 − 0.934i)9-s + (−0.241 − 0.664i)10-s + (0.0431 − 0.0746i)11-s + (0.818 + 0.219i)12-s + (0.0663 + 0.0663i)13-s + (0.686 + 0.168i)14-s + (1.29 + 1.09i)15-s + (0.124 + 0.216i)16-s + (−0.463 − 1.72i)17-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.969+0.245i)Λ(3−s)
Λ(s)=(=(70s/2ΓC(s+1)L(s)(0.969+0.245i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.969+0.245i
|
Analytic conductor: |
1.90736 |
Root analytic conductor: |
1.38107 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1), 0.969+0.245i)
|
Particular Values
L(23) |
≈ |
1.42231−0.177332i |
L(21) |
≈ |
1.42231−0.177332i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.36+0.366i)T |
| 5 | 1+(−2.86−4.09i)T |
| 7 | 1+(6.99−0.145i)T |
good | 3 | 1+(−4.90+1.31i)T+(7.79−4.5i)T2 |
| 11 | 1+(−0.474+0.821i)T+(−60.5−104.i)T2 |
| 13 | 1+(−0.862−0.862i)T+169iT2 |
| 17 | 1+(7.87+29.3i)T+(−250.+144.5i)T2 |
| 19 | 1+(20.9−12.0i)T+(180.5−312.i)T2 |
| 23 | 1+(−1.46+5.47i)T+(−458.−264.5i)T2 |
| 29 | 1−7.33iT−841T2 |
| 31 | 1+(23.5−40.7i)T+(−480.5−832.i)T2 |
| 37 | 1+(−7.95−2.13i)T+(1.18e3+684.5i)T2 |
| 41 | 1−53.3T+1.68e3T2 |
| 43 | 1+(33.0+33.0i)T+1.84e3iT2 |
| 47 | 1+(−29.3−7.87i)T+(1.91e3+1.10e3i)T2 |
| 53 | 1+(12.9−3.48i)T+(2.43e3−1.40e3i)T2 |
| 59 | 1+(43.5+25.1i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(−22.7−39.4i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(17.6+65.9i)T+(−3.88e3+2.24e3i)T2 |
| 71 | 1+11.9T+5.04e3T2 |
| 73 | 1+(−53.2+14.2i)T+(4.61e3−2.66e3i)T2 |
| 79 | 1+(−61.4+35.4i)T+(3.12e3−5.40e3i)T2 |
| 83 | 1+(−85.7−85.7i)T+6.88e3iT2 |
| 89 | 1+(−135.+78.3i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(87.1−87.1i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.29776659717467816845530974326, −13.50916917351319309319134881815, −12.45407798790169573956768653380, −10.67594420002303701424314263184, −9.546914059772159157398455348711, −8.884404288329787593825309535983, −7.43025617834802589623578430434, −6.56047038840215223481132079219, −3.35084009219014865229468866165, −2.30107556862150294027785184457,
2.23058043713398732171991754249, 4.04290983837529895463820598660, 6.24515346848631143152287669632, 7.951564780155934398986612779487, 8.920201355310951771211896086499, 9.523159567859842214171236574170, 10.56543778938090917423711253794, 12.80849797415061814651163357539, 13.35575583362676358170283050119, 14.74835414293624582101730700213