L(s) = 1 | + (−1.36 − 0.366i)2-s + (4.90 − 1.31i)3-s + (1.73 + i)4-s + (2.86 + 4.09i)5-s − 7.18·6-s + (−6.99 + 0.145i)7-s + (−1.99 − 2i)8-s + (14.5 − 8.41i)9-s + (−2.41 − 6.64i)10-s + (0.474 − 0.821i)11-s + (9.81 + 2.63i)12-s + (0.862 + 0.862i)13-s + (9.61 + 2.36i)14-s + (19.4 + 16.3i)15-s + (1.99 + 3.46i)16-s + (−7.87 − 29.3i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (1.63 − 0.438i)3-s + (0.433 + 0.250i)4-s + (0.572 + 0.819i)5-s − 1.19·6-s + (−0.999 + 0.0207i)7-s + (−0.249 − 0.250i)8-s + (1.61 − 0.934i)9-s + (−0.241 − 0.664i)10-s + (0.0431 − 0.0746i)11-s + (0.818 + 0.219i)12-s + (0.0663 + 0.0663i)13-s + (0.686 + 0.168i)14-s + (1.29 + 1.09i)15-s + (0.124 + 0.216i)16-s + (−0.463 − 1.72i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 + 0.245i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.969 + 0.245i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.42231 - 0.177332i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42231 - 0.177332i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 + 0.366i)T \) |
| 5 | \( 1 + (-2.86 - 4.09i)T \) |
| 7 | \( 1 + (6.99 - 0.145i)T \) |
good | 3 | \( 1 + (-4.90 + 1.31i)T + (7.79 - 4.5i)T^{2} \) |
| 11 | \( 1 + (-0.474 + 0.821i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-0.862 - 0.862i)T + 169iT^{2} \) |
| 17 | \( 1 + (7.87 + 29.3i)T + (-250. + 144.5i)T^{2} \) |
| 19 | \( 1 + (20.9 - 12.0i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-1.46 + 5.47i)T + (-458. - 264.5i)T^{2} \) |
| 29 | \( 1 - 7.33iT - 841T^{2} \) |
| 31 | \( 1 + (23.5 - 40.7i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-7.95 - 2.13i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 - 53.3T + 1.68e3T^{2} \) |
| 43 | \( 1 + (33.0 + 33.0i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-29.3 - 7.87i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (12.9 - 3.48i)T + (2.43e3 - 1.40e3i)T^{2} \) |
| 59 | \( 1 + (43.5 + 25.1i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-22.7 - 39.4i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (17.6 + 65.9i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 11.9T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-53.2 + 14.2i)T + (4.61e3 - 2.66e3i)T^{2} \) |
| 79 | \( 1 + (-61.4 + 35.4i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-85.7 - 85.7i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-135. + 78.3i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (87.1 - 87.1i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.29776659717467816845530974326, −13.50916917351319309319134881815, −12.45407798790169573956768653380, −10.67594420002303701424314263184, −9.546914059772159157398455348711, −8.884404288329787593825309535983, −7.43025617834802589623578430434, −6.56047038840215223481132079219, −3.35084009219014865229468866165, −2.30107556862150294027785184457,
2.23058043713398732171991754249, 4.04290983837529895463820598660, 6.24515346848631143152287669632, 7.951564780155934398986612779487, 8.920201355310951771211896086499, 9.523159567859842214171236574170, 10.56543778938090917423711253794, 12.80849797415061814651163357539, 13.35575583362676358170283050119, 14.74835414293624582101730700213