L(s) = 1 | + (0.707 + 0.707i)2-s + (0.541 + 0.541i)3-s + 1.00i·4-s + (−2.23 + 0.158i)5-s + 0.765i·6-s + (1.55 − 2.14i)7-s + (−0.707 + 0.707i)8-s − 2.41i·9-s + (−1.68 − 1.46i)10-s − 2.82·11-s + (−0.541 + 0.541i)12-s + (2.83 + 2.83i)13-s + (2.61 − 0.414i)14-s + (−1.29 − 1.12i)15-s − 1.00·16-s + (1.53 − 1.53i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.312 + 0.312i)3-s + 0.500i·4-s + (−0.997 + 0.0708i)5-s + 0.312i·6-s + (0.587 − 0.809i)7-s + (−0.250 + 0.250i)8-s − 0.804i·9-s + (−0.534 − 0.463i)10-s − 0.852·11-s + (−0.156 + 0.156i)12-s + (0.786 + 0.786i)13-s + (0.698 − 0.110i)14-s + (−0.333 − 0.289i)15-s − 0.250·16-s + (0.371 − 0.371i)17-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.709−0.704i)Λ(2−s)
Λ(s)=(=(70s/2ΓC(s+1/2)L(s)(0.709−0.704i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.709−0.704i
|
Analytic conductor: |
0.558952 |
Root analytic conductor: |
0.747631 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(27,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1/2), 0.709−0.704i)
|
Particular Values
L(1) |
≈ |
1.03517+0.426560i |
L(21) |
≈ |
1.03517+0.426560i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 5 | 1+(2.23−0.158i)T |
| 7 | 1+(−1.55+2.14i)T |
good | 3 | 1+(−0.541−0.541i)T+3iT2 |
| 11 | 1+2.82T+11T2 |
| 13 | 1+(−2.83−2.83i)T+13iT2 |
| 17 | 1+(−1.53+1.53i)T−17iT2 |
| 19 | 1+7.07T+19T2 |
| 23 | 1+(2.41−2.41i)T−23iT2 |
| 29 | 1−4.82iT−29T2 |
| 31 | 1−3.69iT−31T2 |
| 37 | 1+(−5.41−5.41i)T+37iT2 |
| 41 | 1+1.53iT−41T2 |
| 43 | 1+(−4+4i)T−43iT2 |
| 47 | 1+(2.61−2.61i)T−47iT2 |
| 53 | 1+(−0.242+0.242i)T−53iT2 |
| 59 | 1−3.82T+59T2 |
| 61 | 1+10.3iT−61T2 |
| 67 | 1+(6.48+6.48i)T+67iT2 |
| 71 | 1+3.41T+71T2 |
| 73 | 1+(−4.77−4.77i)T+73iT2 |
| 79 | 1+9.07iT−79T2 |
| 83 | 1+(5.45+5.45i)T+83iT2 |
| 89 | 1−16.9T+89T2 |
| 97 | 1+(11.0−11.0i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.86495883359545340948585141707, −14.04186313654186145371724770179, −12.78911009055174607590716488114, −11.61222589253796268710097186622, −10.55491785123610102053552139526, −8.788634649514958751010422261998, −7.79600326359745513209330029133, −6.57503830327895080777047985474, −4.61186103028457701914632051657, −3.58589607845968787871267683122,
2.49398922054417643061211859424, 4.34714517064839696655961222057, 5.80269736865371601942855919682, 7.85927429299248757757125324790, 8.487602544523923664017689457570, 10.51185031710145582993958243683, 11.29851779630329402381334620667, 12.55333840121385503185430017922, 13.21628724775994049998882943255, 14.65623325463360571351479656474