L(s) = 1 | + (0.707 + 0.707i)2-s + (0.541 + 0.541i)3-s + 1.00i·4-s + (−2.23 + 0.158i)5-s + 0.765i·6-s + (1.55 − 2.14i)7-s + (−0.707 + 0.707i)8-s − 2.41i·9-s + (−1.68 − 1.46i)10-s − 2.82·11-s + (−0.541 + 0.541i)12-s + (2.83 + 2.83i)13-s + (2.61 − 0.414i)14-s + (−1.29 − 1.12i)15-s − 1.00·16-s + (1.53 − 1.53i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.312 + 0.312i)3-s + 0.500i·4-s + (−0.997 + 0.0708i)5-s + 0.312i·6-s + (0.587 − 0.809i)7-s + (−0.250 + 0.250i)8-s − 0.804i·9-s + (−0.534 − 0.463i)10-s − 0.852·11-s + (−0.156 + 0.156i)12-s + (0.786 + 0.786i)13-s + (0.698 − 0.110i)14-s + (−0.333 − 0.289i)15-s − 0.250·16-s + (0.371 − 0.371i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.709 - 0.704i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.709 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03517 + 0.426560i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03517 + 0.426560i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (2.23 - 0.158i)T \) |
| 7 | \( 1 + (-1.55 + 2.14i)T \) |
good | 3 | \( 1 + (-0.541 - 0.541i)T + 3iT^{2} \) |
| 11 | \( 1 + 2.82T + 11T^{2} \) |
| 13 | \( 1 + (-2.83 - 2.83i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.53 + 1.53i)T - 17iT^{2} \) |
| 19 | \( 1 + 7.07T + 19T^{2} \) |
| 23 | \( 1 + (2.41 - 2.41i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.82iT - 29T^{2} \) |
| 31 | \( 1 - 3.69iT - 31T^{2} \) |
| 37 | \( 1 + (-5.41 - 5.41i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.53iT - 41T^{2} \) |
| 43 | \( 1 + (-4 + 4i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.61 - 2.61i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.242 + 0.242i)T - 53iT^{2} \) |
| 59 | \( 1 - 3.82T + 59T^{2} \) |
| 61 | \( 1 + 10.3iT - 61T^{2} \) |
| 67 | \( 1 + (6.48 + 6.48i)T + 67iT^{2} \) |
| 71 | \( 1 + 3.41T + 71T^{2} \) |
| 73 | \( 1 + (-4.77 - 4.77i)T + 73iT^{2} \) |
| 79 | \( 1 + 9.07iT - 79T^{2} \) |
| 83 | \( 1 + (5.45 + 5.45i)T + 83iT^{2} \) |
| 89 | \( 1 - 16.9T + 89T^{2} \) |
| 97 | \( 1 + (11.0 - 11.0i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.86495883359545340948585141707, −14.04186313654186145371724770179, −12.78911009055174607590716488114, −11.61222589253796268710097186622, −10.55491785123610102053552139526, −8.788634649514958751010422261998, −7.79600326359745513209330029133, −6.57503830327895080777047985474, −4.61186103028457701914632051657, −3.58589607845968787871267683122,
2.49398922054417643061211859424, 4.34714517064839696655961222057, 5.80269736865371601942855919682, 7.85927429299248757757125324790, 8.487602544523923664017689457570, 10.51185031710145582993958243683, 11.29851779630329402381334620667, 12.55333840121385503185430017922, 13.21628724775994049998882943255, 14.65623325463360571351479656474