L(s) = 1 | + (0.866 − 0.5i)2-s + (−2.59 − 1.5i)3-s + (0.499 − 0.866i)4-s + (1.23 − 1.86i)5-s − 3·6-s + (0.866 + 2.5i)7-s − 0.999i·8-s + (3 + 5.19i)9-s + (0.133 − 2.23i)10-s + (−2.59 + 1.50i)12-s + 2i·13-s + (2 + 1.73i)14-s + (−6 + 3i)15-s + (−0.5 − 0.866i)16-s + (1.73 + i)17-s + (5.19 + 3i)18-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−1.49 − 0.866i)3-s + (0.249 − 0.433i)4-s + (0.550 − 0.834i)5-s − 1.22·6-s + (0.327 + 0.944i)7-s − 0.353i·8-s + (1 + 1.73i)9-s + (0.0423 − 0.705i)10-s + (−0.749 + 0.433i)12-s + 0.554i·13-s + (0.534 + 0.462i)14-s + (−1.54 + 0.774i)15-s + (−0.125 − 0.216i)16-s + (0.420 + 0.242i)17-s + (1.22 + 0.707i)18-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.208+0.978i)Λ(2−s)
Λ(s)=(=(70s/2ΓC(s+1/2)L(s)(0.208+0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.208+0.978i
|
Analytic conductor: |
0.558952 |
Root analytic conductor: |
0.747631 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(39,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1/2), 0.208+0.978i)
|
Particular Values
L(1) |
≈ |
0.708696−0.573475i |
L(21) |
≈ |
0.708696−0.573475i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 5 | 1+(−1.23+1.86i)T |
| 7 | 1+(−0.866−2.5i)T |
good | 3 | 1+(2.59+1.5i)T+(1.5+2.59i)T2 |
| 11 | 1+(−5.5−9.52i)T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1+(−1.73−i)T+(8.5+14.7i)T2 |
| 19 | 1+(1+1.73i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.866+0.5i)T+(11.5−19.9i)T2 |
| 29 | 1−T+29T2 |
| 31 | 1+(5−8.66i)T+(−15.5−26.8i)T2 |
| 37 | 1+(6.92−4i)T+(18.5−32.0i)T2 |
| 41 | 1+3T+41T2 |
| 43 | 1+5iT−43T2 |
| 47 | 1+(−6.92+4i)T+(23.5−40.7i)T2 |
| 53 | 1+(5.19+3i)T+(26.5+45.8i)T2 |
| 59 | 1+(−1+1.73i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.5−7.79i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.06−3.5i)T+(33.5+58.0i)T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+(8.66+5i)T+(36.5+63.2i)T2 |
| 79 | 1+(5+8.66i)T+(−39.5+68.4i)T2 |
| 83 | 1−9iT−83T2 |
| 89 | 1+(3.5+6.06i)T+(−44.5+77.0i)T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.12965696730763055122141290614, −12.97293312071078694527113425833, −12.28117800541804475435058764838, −11.61538378737480570837057754073, −10.39247182324690179314206702678, −8.745418404231952740762255374242, −6.84056006356308735358610205757, −5.67341944065894258133949738608, −4.94425525517896381904069506670, −1.72010951584794250908056878961,
3.81770243724999369473839296429, 5.22625661068966867787152024155, 6.21924130930249366732776460977, 7.42171420125352958769405301091, 9.806660943830376443911478166377, 10.70567023931131578997706477842, 11.39444897057865450990211041701, 12.74016830980429047250725311396, 14.04688400236946830188324989970, 15.01378994561969518513406450315