Properties

Label 2-70-35.4-c1-0-3
Degree $2$
Conductor $70$
Sign $0.208 + 0.978i$
Analytic cond. $0.558952$
Root an. cond. $0.747631$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (−2.59 − 1.5i)3-s + (0.499 − 0.866i)4-s + (1.23 − 1.86i)5-s − 3·6-s + (0.866 + 2.5i)7-s − 0.999i·8-s + (3 + 5.19i)9-s + (0.133 − 2.23i)10-s + (−2.59 + 1.50i)12-s + 2i·13-s + (2 + 1.73i)14-s + (−6 + 3i)15-s + (−0.5 − 0.866i)16-s + (1.73 + i)17-s + (5.19 + 3i)18-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (−1.49 − 0.866i)3-s + (0.249 − 0.433i)4-s + (0.550 − 0.834i)5-s − 1.22·6-s + (0.327 + 0.944i)7-s − 0.353i·8-s + (1 + 1.73i)9-s + (0.0423 − 0.705i)10-s + (−0.749 + 0.433i)12-s + 0.554i·13-s + (0.534 + 0.462i)14-s + (−1.54 + 0.774i)15-s + (−0.125 − 0.216i)16-s + (0.420 + 0.242i)17-s + (1.22 + 0.707i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.208 + 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.208 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $0.208 + 0.978i$
Analytic conductor: \(0.558952\)
Root analytic conductor: \(0.747631\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{70} (39, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 70,\ (\ :1/2),\ 0.208 + 0.978i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.708696 - 0.573475i\)
\(L(\frac12)\) \(\approx\) \(0.708696 - 0.573475i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 + 0.5i)T \)
5 \( 1 + (-1.23 + 1.86i)T \)
7 \( 1 + (-0.866 - 2.5i)T \)
good3 \( 1 + (2.59 + 1.5i)T + (1.5 + 2.59i)T^{2} \)
11 \( 1 + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 + (-1.73 - i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.866 + 0.5i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 - T + 29T^{2} \)
31 \( 1 + (5 - 8.66i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (6.92 - 4i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + 3T + 41T^{2} \)
43 \( 1 + 5iT - 43T^{2} \)
47 \( 1 + (-6.92 + 4i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (5.19 + 3i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (-1 + 1.73i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-4.5 - 7.79i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-6.06 - 3.5i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + (8.66 + 5i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (5 + 8.66i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 9iT - 83T^{2} \)
89 \( 1 + (3.5 + 6.06i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.12965696730763055122141290614, −12.97293312071078694527113425833, −12.28117800541804475435058764838, −11.61538378737480570837057754073, −10.39247182324690179314206702678, −8.745418404231952740762255374242, −6.84056006356308735358610205757, −5.67341944065894258133949738608, −4.94425525517896381904069506670, −1.72010951584794250908056878961, 3.81770243724999369473839296429, 5.22625661068966867787152024155, 6.21924130930249366732776460977, 7.42171420125352958769405301091, 9.806660943830376443911478166377, 10.70567023931131578997706477842, 11.39444897057865450990211041701, 12.74016830980429047250725311396, 14.04688400236946830188324989970, 15.01378994561969518513406450315

Graph of the $Z$-function along the critical line