L(s) = 1 | + (0.866 − 0.5i)2-s + (−2.59 − 1.5i)3-s + (0.499 − 0.866i)4-s + (1.23 − 1.86i)5-s − 3·6-s + (0.866 + 2.5i)7-s − 0.999i·8-s + (3 + 5.19i)9-s + (0.133 − 2.23i)10-s + (−2.59 + 1.50i)12-s + 2i·13-s + (2 + 1.73i)14-s + (−6 + 3i)15-s + (−0.5 − 0.866i)16-s + (1.73 + i)17-s + (5.19 + 3i)18-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−1.49 − 0.866i)3-s + (0.249 − 0.433i)4-s + (0.550 − 0.834i)5-s − 1.22·6-s + (0.327 + 0.944i)7-s − 0.353i·8-s + (1 + 1.73i)9-s + (0.0423 − 0.705i)10-s + (−0.749 + 0.433i)12-s + 0.554i·13-s + (0.534 + 0.462i)14-s + (−1.54 + 0.774i)15-s + (−0.125 − 0.216i)16-s + (0.420 + 0.242i)17-s + (1.22 + 0.707i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.208 + 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.208 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.708696 - 0.573475i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.708696 - 0.573475i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (-1.23 + 1.86i)T \) |
| 7 | \( 1 + (-0.866 - 2.5i)T \) |
good | 3 | \( 1 + (2.59 + 1.5i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + (-1.73 - i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - T + 29T^{2} \) |
| 31 | \( 1 + (5 - 8.66i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (6.92 - 4i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 + 5iT - 43T^{2} \) |
| 47 | \( 1 + (-6.92 + 4i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.19 + 3i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.5 - 7.79i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.06 - 3.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + (8.66 + 5i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5 + 8.66i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 9iT - 83T^{2} \) |
| 89 | \( 1 + (3.5 + 6.06i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.12965696730763055122141290614, −12.97293312071078694527113425833, −12.28117800541804475435058764838, −11.61538378737480570837057754073, −10.39247182324690179314206702678, −8.745418404231952740762255374242, −6.84056006356308735358610205757, −5.67341944065894258133949738608, −4.94425525517896381904069506670, −1.72010951584794250908056878961,
3.81770243724999369473839296429, 5.22625661068966867787152024155, 6.21924130930249366732776460977, 7.42171420125352958769405301091, 9.806660943830376443911478166377, 10.70567023931131578997706477842, 11.39444897057865450990211041701, 12.74016830980429047250725311396, 14.04688400236946830188324989970, 15.01378994561969518513406450315