L(s) = 1 | + 4i·2-s − 22.6i·3-s − 16·4-s + (43.3 + 35.2i)5-s + 90.7·6-s + 49i·7-s − 64i·8-s − 272.·9-s + (−141. + 173. i)10-s + 527.·11-s + 363. i·12-s − 1.08e3i·13-s − 196·14-s + (800. − 984. i)15-s + 256·16-s − 1.82e3i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.45i·3-s − 0.5·4-s + (0.776 + 0.630i)5-s + 1.02·6-s + 0.377i·7-s − 0.353i·8-s − 1.11·9-s + (−0.445 + 0.548i)10-s + 1.31·11-s + 0.727i·12-s − 1.77i·13-s − 0.267·14-s + (0.918 − 1.12i)15-s + 0.250·16-s − 1.53i·17-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.776+0.630i)Λ(6−s)
Λ(s)=(=(70s/2ΓC(s+5/2)L(s)(0.776+0.630i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.776+0.630i
|
Analytic conductor: |
11.2268 |
Root analytic conductor: |
3.35065 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :5/2), 0.776+0.630i)
|
Particular Values
L(3) |
≈ |
1.80762−0.641812i |
L(21) |
≈ |
1.80762−0.641812i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 5 | 1+(−43.3−35.2i)T |
| 7 | 1−49iT |
good | 3 | 1+22.6iT−243T2 |
| 11 | 1−527.T+1.61e5T2 |
| 13 | 1+1.08e3iT−3.71e5T2 |
| 17 | 1+1.82e3iT−1.41e6T2 |
| 19 | 1−113.T+2.47e6T2 |
| 23 | 1−8.45iT−6.43e6T2 |
| 29 | 1−7.75e3T+2.05e7T2 |
| 31 | 1+5.07e3T+2.86e7T2 |
| 37 | 1−1.12e4iT−6.93e7T2 |
| 41 | 1−4.49e3T+1.15e8T2 |
| 43 | 1+1.71e4iT−1.47e8T2 |
| 47 | 1−1.65e3iT−2.29e8T2 |
| 53 | 1−6.20e3iT−4.18e8T2 |
| 59 | 1+6.32e3T+7.14e8T2 |
| 61 | 1−2.28e4T+8.44e8T2 |
| 67 | 1−6.60e4iT−1.35e9T2 |
| 71 | 1+2.98e4T+1.80e9T2 |
| 73 | 1−2.01e4iT−2.07e9T2 |
| 79 | 1+2.27e4T+3.07e9T2 |
| 83 | 1−8.15e4iT−3.93e9T2 |
| 89 | 1+7.01e4T+5.58e9T2 |
| 97 | 1+9.37e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.72456588792517806966711737774, −12.74679281313366293520625524818, −11.69313174057816816675008232791, −10.01293081228602045489840377939, −8.662666024089320744573184540762, −7.35497334903504880372293437000, −6.55084057257130076573251874012, −5.49575929342288443442393764266, −2.80566782478734642695123587448, −0.992084140478228599584514691318,
1.61149857869042726655174136103, 3.88243140363068982158760594627, 4.60372037360518008425324630800, 6.27020317734126453716070164450, 8.809272923373119837507441143511, 9.390976237854387166037473728439, 10.33452324337145829531893188336, 11.39031198771377445161699193733, 12.59817541572690969187889117463, 14.04578028264643251466809573307