L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s − 0.999·6-s + (−0.5 − 2.59i)7-s − 0.999·8-s + (1 + 1.73i)9-s + (−0.499 + 0.866i)10-s + (3 − 5.19i)11-s + (−0.499 − 0.866i)12-s − 4·13-s + (2 − 1.73i)14-s − 0.999·15-s + (−0.5 − 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s − 0.408·6-s + (−0.188 − 0.981i)7-s − 0.353·8-s + (0.333 + 0.577i)9-s + (−0.158 + 0.273i)10-s + (0.904 − 1.56i)11-s + (−0.144 − 0.249i)12-s − 1.10·13-s + (0.534 − 0.462i)14-s − 0.258·15-s + (−0.125 − 0.216i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.827466 + 0.550415i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.827466 + 0.550415i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 + 2.59i)T \) |
good | 3 | \( 1 + (0.5 - 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-3 + 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3T + 29T^{2} \) |
| 31 | \( 1 + (4 - 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 - 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 9T + 41T^{2} \) |
| 43 | \( 1 + 7T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3 + 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 - 4.33i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + (-8 + 13.8i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3T + 83T^{2} \) |
| 89 | \( 1 + (-7.5 - 12.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.81856775359933444898427806420, −13.95405510801181231302130060545, −13.10628249052049853098496413897, −11.46184298868531629539847871046, −10.50931177147680436079438206836, −9.260788071972860386282139750579, −7.64235446639417735456485637220, −6.51434725552277554544789032162, −5.05512227067677025191579081551, −3.60004486490227968671810948230,
2.06539597472512688526896396217, 4.36637257403942965751068337280, 5.87268498267100909281846045227, 7.20871338231226987004533945840, 9.192176858265344691468648731669, 9.836512944089622846365789091494, 11.66137905510734289213836183759, 12.43727438283056963935294979956, 12.86032123579720894901900042944, 14.64560738992494087806062720888