L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s − 0.999·6-s + (−0.5 − 2.59i)7-s − 0.999·8-s + (1 + 1.73i)9-s + (−0.499 + 0.866i)10-s + (3 − 5.19i)11-s + (−0.499 − 0.866i)12-s − 4·13-s + (2 − 1.73i)14-s − 0.999·15-s + (−0.5 − 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s − 0.408·6-s + (−0.188 − 0.981i)7-s − 0.353·8-s + (0.333 + 0.577i)9-s + (−0.158 + 0.273i)10-s + (0.904 − 1.56i)11-s + (−0.144 − 0.249i)12-s − 1.10·13-s + (0.534 − 0.462i)14-s − 0.258·15-s + (−0.125 − 0.216i)16-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.386−0.922i)Λ(2−s)
Λ(s)=(=(70s/2ΓC(s+1/2)L(s)(0.386−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.386−0.922i
|
Analytic conductor: |
0.558952 |
Root analytic conductor: |
0.747631 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1/2), 0.386−0.922i)
|
Particular Values
L(1) |
≈ |
0.827466+0.550415i |
L(21) |
≈ |
0.827466+0.550415i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 5 | 1+(−0.5−0.866i)T |
| 7 | 1+(0.5+2.59i)T |
good | 3 | 1+(0.5−0.866i)T+(−1.5−2.59i)T2 |
| 11 | 1+(−3+5.19i)T+(−5.5−9.52i)T2 |
| 13 | 1+4T+13T2 |
| 17 | 1+(−8.5−14.7i)T2 |
| 19 | 1+(1+1.73i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.5−2.59i)T+(−11.5+19.9i)T2 |
| 29 | 1+3T+29T2 |
| 31 | 1+(4−6.92i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−2−3.46i)T+(−18.5+32.0i)T2 |
| 41 | 1−9T+41T2 |
| 43 | 1+7T+43T2 |
| 47 | 1+(−23.5+40.7i)T2 |
| 53 | 1+(−3+5.19i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−3+5.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.5+4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.5−4.33i)T+(−33.5−58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+(−8+13.8i)T+(−36.5−63.2i)T2 |
| 79 | 1+(1+1.73i)T+(−39.5+68.4i)T2 |
| 83 | 1−3T+83T2 |
| 89 | 1+(−7.5−12.9i)T+(−44.5+77.0i)T2 |
| 97 | 1−14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.81856775359933444898427806420, −13.95405510801181231302130060545, −13.10628249052049853098496413897, −11.46184298868531629539847871046, −10.50931177147680436079438206836, −9.260788071972860386282139750579, −7.64235446639417735456485637220, −6.51434725552277554544789032162, −5.05512227067677025191579081551, −3.60004486490227968671810948230,
2.06539597472512688526896396217, 4.36637257403942965751068337280, 5.87268498267100909281846045227, 7.20871338231226987004533945840, 9.192176858265344691468648731669, 9.836512944089622846365789091494, 11.66137905510734289213836183759, 12.43727438283056963935294979956, 12.86032123579720894901900042944, 14.64560738992494087806062720888