Properties

Label 2-700-1.1-c5-0-1
Degree $2$
Conductor $700$
Sign $1$
Analytic cond. $112.268$
Root an. cond. $10.5956$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17.5·3-s + 49·7-s + 64.7·9-s − 444.·11-s − 705.·13-s + 363.·17-s − 280.·19-s − 859.·21-s − 2.95e3·23-s + 3.12e3·27-s + 5.09e3·29-s − 4.39e3·31-s + 7.79e3·33-s − 1.11e4·37-s + 1.23e4·39-s − 2.00e4·41-s + 4.09e3·43-s + 2.01e4·47-s + 2.40e3·49-s − 6.37e3·51-s − 1.86e4·53-s + 4.91e3·57-s − 3.68e4·59-s − 2.38e4·61-s + 3.17e3·63-s + 2.63e4·67-s + 5.19e4·69-s + ⋯
L(s)  = 1  − 1.12·3-s + 0.377·7-s + 0.266·9-s − 1.10·11-s − 1.15·13-s + 0.305·17-s − 0.178·19-s − 0.425·21-s − 1.16·23-s + 0.825·27-s + 1.12·29-s − 0.821·31-s + 1.24·33-s − 1.34·37-s + 1.30·39-s − 1.86·41-s + 0.337·43-s + 1.32·47-s + 0.142·49-s − 0.343·51-s − 0.913·53-s + 0.200·57-s − 1.37·59-s − 0.819·61-s + 0.100·63-s + 0.716·67-s + 1.31·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(112.268\)
Root analytic conductor: \(10.5956\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4508627132\)
\(L(\frac12)\) \(\approx\) \(0.4508627132\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - 49T \)
good3 \( 1 + 17.5T + 243T^{2} \)
11 \( 1 + 444.T + 1.61e5T^{2} \)
13 \( 1 + 705.T + 3.71e5T^{2} \)
17 \( 1 - 363.T + 1.41e6T^{2} \)
19 \( 1 + 280.T + 2.47e6T^{2} \)
23 \( 1 + 2.95e3T + 6.43e6T^{2} \)
29 \( 1 - 5.09e3T + 2.05e7T^{2} \)
31 \( 1 + 4.39e3T + 2.86e7T^{2} \)
37 \( 1 + 1.11e4T + 6.93e7T^{2} \)
41 \( 1 + 2.00e4T + 1.15e8T^{2} \)
43 \( 1 - 4.09e3T + 1.47e8T^{2} \)
47 \( 1 - 2.01e4T + 2.29e8T^{2} \)
53 \( 1 + 1.86e4T + 4.18e8T^{2} \)
59 \( 1 + 3.68e4T + 7.14e8T^{2} \)
61 \( 1 + 2.38e4T + 8.44e8T^{2} \)
67 \( 1 - 2.63e4T + 1.35e9T^{2} \)
71 \( 1 + 4.70e4T + 1.80e9T^{2} \)
73 \( 1 - 2.01e4T + 2.07e9T^{2} \)
79 \( 1 + 8.11e4T + 3.07e9T^{2} \)
83 \( 1 + 7.65e3T + 3.93e9T^{2} \)
89 \( 1 + 1.04e5T + 5.58e9T^{2} \)
97 \( 1 - 3.59e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10716855865305126932243446581, −8.761014044801854912090588940490, −7.84071147251677510855585663272, −7.02061980613042462819124923757, −5.94396083563639225776434459477, −5.21838381355349977618491643502, −4.54792998191904483231233347270, −3.01684987750985468153075558252, −1.83038117537204298642594176778, −0.32135166992628112006299420690, 0.32135166992628112006299420690, 1.83038117537204298642594176778, 3.01684987750985468153075558252, 4.54792998191904483231233347270, 5.21838381355349977618491643502, 5.94396083563639225776434459477, 7.02061980613042462819124923757, 7.84071147251677510855585663272, 8.761014044801854912090588940490, 10.10716855865305126932243446581

Graph of the $Z$-function along the critical line