L(s) = 1 | + 20.1·3-s − 49·7-s + 162.·9-s − 427.·11-s + 646.·13-s + 1.02e3·17-s + 2.25e3·19-s − 986.·21-s − 2.59e3·23-s − 1.62e3·27-s + 869.·29-s + 4.40e3·31-s − 8.59e3·33-s − 2.55e3·37-s + 1.30e4·39-s + 6.22e3·41-s − 7.75e3·43-s − 1.88e3·47-s + 2.40e3·49-s + 2.07e4·51-s + 1.17e4·53-s + 4.53e4·57-s + 3.33e4·59-s − 1.21e3·61-s − 7.93e3·63-s + 5.04e4·67-s − 5.22e4·69-s + ⋯ |
L(s) = 1 | + 1.29·3-s − 0.377·7-s + 0.666·9-s − 1.06·11-s + 1.06·13-s + 0.863·17-s + 1.43·19-s − 0.487·21-s − 1.02·23-s − 0.430·27-s + 0.192·29-s + 0.823·31-s − 1.37·33-s − 0.306·37-s + 1.37·39-s + 0.578·41-s − 0.639·43-s − 0.124·47-s + 0.142·49-s + 1.11·51-s + 0.573·53-s + 1.84·57-s + 1.24·59-s − 0.0417·61-s − 0.251·63-s + 1.37·67-s − 1.32·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(3.547098207\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.547098207\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 49T \) |
good | 3 | \( 1 - 20.1T + 243T^{2} \) |
| 11 | \( 1 + 427.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 646.T + 3.71e5T^{2} \) |
| 17 | \( 1 - 1.02e3T + 1.41e6T^{2} \) |
| 19 | \( 1 - 2.25e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 2.59e3T + 6.43e6T^{2} \) |
| 29 | \( 1 - 869.T + 2.05e7T^{2} \) |
| 31 | \( 1 - 4.40e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 2.55e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 6.22e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 7.75e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 1.88e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.17e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 3.33e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 1.21e3T + 8.44e8T^{2} \) |
| 67 | \( 1 - 5.04e4T + 1.35e9T^{2} \) |
| 71 | \( 1 - 5.72e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 8.40e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 9.84e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.21e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 5.43e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 2.17e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.715075521473317444322645544191, −8.679816580525358449667233193214, −8.051847013109266841526577002034, −7.39678394169658436991657166323, −6.12034048871045486050128002455, −5.18875134753975272372199552175, −3.74763557682666703380903945841, −3.14576833473761073611223871031, −2.17093829944015525415507595411, −0.834811560736841051126770626879,
0.834811560736841051126770626879, 2.17093829944015525415507595411, 3.14576833473761073611223871031, 3.74763557682666703380903945841, 5.18875134753975272372199552175, 6.12034048871045486050128002455, 7.39678394169658436991657166323, 8.051847013109266841526577002034, 8.679816580525358449667233193214, 9.715075521473317444322645544191