Properties

Label 2-700-1.1-c5-0-16
Degree $2$
Conductor $700$
Sign $1$
Analytic cond. $112.268$
Root an. cond. $10.5956$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.1·3-s − 49·7-s + 162.·9-s − 427.·11-s + 646.·13-s + 1.02e3·17-s + 2.25e3·19-s − 986.·21-s − 2.59e3·23-s − 1.62e3·27-s + 869.·29-s + 4.40e3·31-s − 8.59e3·33-s − 2.55e3·37-s + 1.30e4·39-s + 6.22e3·41-s − 7.75e3·43-s − 1.88e3·47-s + 2.40e3·49-s + 2.07e4·51-s + 1.17e4·53-s + 4.53e4·57-s + 3.33e4·59-s − 1.21e3·61-s − 7.93e3·63-s + 5.04e4·67-s − 5.22e4·69-s + ⋯
L(s)  = 1  + 1.29·3-s − 0.377·7-s + 0.666·9-s − 1.06·11-s + 1.06·13-s + 0.863·17-s + 1.43·19-s − 0.487·21-s − 1.02·23-s − 0.430·27-s + 0.192·29-s + 0.823·31-s − 1.37·33-s − 0.306·37-s + 1.37·39-s + 0.578·41-s − 0.639·43-s − 0.124·47-s + 0.142·49-s + 1.11·51-s + 0.573·53-s + 1.84·57-s + 1.24·59-s − 0.0417·61-s − 0.251·63-s + 1.37·67-s − 1.32·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(112.268\)
Root analytic conductor: \(10.5956\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.547098207\)
\(L(\frac12)\) \(\approx\) \(3.547098207\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + 49T \)
good3 \( 1 - 20.1T + 243T^{2} \)
11 \( 1 + 427.T + 1.61e5T^{2} \)
13 \( 1 - 646.T + 3.71e5T^{2} \)
17 \( 1 - 1.02e3T + 1.41e6T^{2} \)
19 \( 1 - 2.25e3T + 2.47e6T^{2} \)
23 \( 1 + 2.59e3T + 6.43e6T^{2} \)
29 \( 1 - 869.T + 2.05e7T^{2} \)
31 \( 1 - 4.40e3T + 2.86e7T^{2} \)
37 \( 1 + 2.55e3T + 6.93e7T^{2} \)
41 \( 1 - 6.22e3T + 1.15e8T^{2} \)
43 \( 1 + 7.75e3T + 1.47e8T^{2} \)
47 \( 1 + 1.88e3T + 2.29e8T^{2} \)
53 \( 1 - 1.17e4T + 4.18e8T^{2} \)
59 \( 1 - 3.33e4T + 7.14e8T^{2} \)
61 \( 1 + 1.21e3T + 8.44e8T^{2} \)
67 \( 1 - 5.04e4T + 1.35e9T^{2} \)
71 \( 1 - 5.72e4T + 1.80e9T^{2} \)
73 \( 1 + 8.40e4T + 2.07e9T^{2} \)
79 \( 1 - 9.84e4T + 3.07e9T^{2} \)
83 \( 1 - 3.21e4T + 3.93e9T^{2} \)
89 \( 1 - 5.43e4T + 5.58e9T^{2} \)
97 \( 1 - 2.17e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.715075521473317444322645544191, −8.679816580525358449667233193214, −8.051847013109266841526577002034, −7.39678394169658436991657166323, −6.12034048871045486050128002455, −5.18875134753975272372199552175, −3.74763557682666703380903945841, −3.14576833473761073611223871031, −2.17093829944015525415507595411, −0.834811560736841051126770626879, 0.834811560736841051126770626879, 2.17093829944015525415507595411, 3.14576833473761073611223871031, 3.74763557682666703380903945841, 5.18875134753975272372199552175, 6.12034048871045486050128002455, 7.39678394169658436991657166323, 8.051847013109266841526577002034, 8.679816580525358449667233193214, 9.715075521473317444322645544191

Graph of the $Z$-function along the critical line