L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 + 0.707i)7-s + (0.707 + 0.707i)8-s + i·9-s − 1.00i·14-s − 1.00·16-s + (−0.707 − 0.707i)18-s + (1.41 + 1.41i)23-s + (0.707 + 0.707i)28-s + 2i·29-s + (0.707 − 0.707i)32-s + 1.00·36-s + (−1.41 − 1.41i)43-s − 2.00·46-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 + 0.707i)7-s + (0.707 + 0.707i)8-s + i·9-s − 1.00i·14-s − 1.00·16-s + (−0.707 − 0.707i)18-s + (1.41 + 1.41i)23-s + (0.707 + 0.707i)28-s + 2i·29-s + (0.707 − 0.707i)32-s + 1.00·36-s + (−1.41 − 1.41i)43-s − 2.00·46-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.229−0.973i)Λ(1−s)
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.229−0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.229−0.973i
|
Analytic conductor: |
0.349345 |
Root analytic conductor: |
0.591054 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :0), −0.229−0.973i)
|
Particular Values
L(21) |
≈ |
0.5867867760 |
L(21) |
≈ |
0.5867867760 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 5 | 1 |
| 7 | 1+(0.707−0.707i)T |
good | 3 | 1−iT2 |
| 11 | 1−T2 |
| 13 | 1+iT2 |
| 17 | 1−iT2 |
| 19 | 1−T2 |
| 23 | 1+(−1.41−1.41i)T+iT2 |
| 29 | 1−2iT−T2 |
| 31 | 1+T2 |
| 37 | 1+iT2 |
| 41 | 1−T2 |
| 43 | 1+(1.41+1.41i)T+iT2 |
| 47 | 1+iT2 |
| 53 | 1−iT2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+(−1.41+1.41i)T−iT2 |
| 71 | 1−T2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1−iT2 |
| 89 | 1+T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73098792285850473462189574181, −9.873750436357749173367187532386, −9.062762101882822741284211128927, −8.431442871835027251479942827423, −7.35232489365937480203590558845, −6.72670947749367994039517362325, −5.50586403046430644841154787085, −5.02992254519506161452014467640, −3.22320742186180687134708825688, −1.79710515612962831056229060091,
0.846763681165843152092747064034, 2.66049536488616773387402090552, 3.62684846329334024325044322582, 4.55594170247509726027221479847, 6.32901388526955899998722511304, 6.92689804270752575492875530616, 7.986476815199382154730814820442, 8.896642961291530397978538190496, 9.692394288438552140145991874321, 10.23809181413618453542343597327