L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 + 0.707i)7-s + (0.707 + 0.707i)8-s + i·9-s − 1.00i·14-s − 1.00·16-s + (−0.707 − 0.707i)18-s + (1.41 + 1.41i)23-s + (0.707 + 0.707i)28-s + 2i·29-s + (0.707 − 0.707i)32-s + 1.00·36-s + (−1.41 − 1.41i)43-s − 2.00·46-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 + 0.707i)7-s + (0.707 + 0.707i)8-s + i·9-s − 1.00i·14-s − 1.00·16-s + (−0.707 − 0.707i)18-s + (1.41 + 1.41i)23-s + (0.707 + 0.707i)28-s + 2i·29-s + (0.707 − 0.707i)32-s + 1.00·36-s + (−1.41 − 1.41i)43-s − 2.00·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5867867760\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5867867760\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 - iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73098792285850473462189574181, −9.873750436357749173367187532386, −9.062762101882822741284211128927, −8.431442871835027251479942827423, −7.35232489365937480203590558845, −6.72670947749367994039517362325, −5.50586403046430644841154787085, −5.02992254519506161452014467640, −3.22320742186180687134708825688, −1.79710515612962831056229060091,
0.846763681165843152092747064034, 2.66049536488616773387402090552, 3.62684846329334024325044322582, 4.55594170247509726027221479847, 6.32901388526955899998722511304, 6.92689804270752575492875530616, 7.986476815199382154730814820442, 8.896642961291530397978538190496, 9.692394288438552140145991874321, 10.23809181413618453542343597327