Properties

Label 2-700-28.19-c1-0-39
Degree $2$
Conductor $700$
Sign $0.506 - 0.862i$
Analytic cond. $5.58952$
Root an. cond. $2.36421$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.288 + 1.38i)2-s + (0.450 + 0.780i)3-s + (−1.83 − 0.798i)4-s + (−1.21 + 0.398i)6-s + (2.29 + 1.30i)7-s + (1.63 − 2.30i)8-s + (1.09 − 1.89i)9-s + (3.24 − 1.87i)11-s + (−0.202 − 1.79i)12-s − 2.41i·13-s + (−2.47 + 2.80i)14-s + (2.72 + 2.92i)16-s + (0.505 − 0.291i)17-s + (2.30 + 2.06i)18-s + (3.07 − 5.33i)19-s + ⋯
L(s)  = 1  + (−0.204 + 0.978i)2-s + (0.260 + 0.450i)3-s + (−0.916 − 0.399i)4-s + (−0.494 + 0.162i)6-s + (0.869 + 0.494i)7-s + (0.578 − 0.815i)8-s + (0.364 − 0.631i)9-s + (0.977 − 0.564i)11-s + (−0.0585 − 0.517i)12-s − 0.671i·13-s + (−0.661 + 0.750i)14-s + (0.680 + 0.732i)16-s + (0.122 − 0.0707i)17-s + (0.543 + 0.485i)18-s + (0.706 − 1.22i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.506 - 0.862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.506 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.506 - 0.862i$
Analytic conductor: \(5.58952\)
Root analytic conductor: \(2.36421\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{700} (551, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :1/2),\ 0.506 - 0.862i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.40383 + 0.803268i\)
\(L(\frac12)\) \(\approx\) \(1.40383 + 0.803268i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.288 - 1.38i)T \)
5 \( 1 \)
7 \( 1 + (-2.29 - 1.30i)T \)
good3 \( 1 + (-0.450 - 0.780i)T + (-1.5 + 2.59i)T^{2} \)
11 \( 1 + (-3.24 + 1.87i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + 2.41iT - 13T^{2} \)
17 \( 1 + (-0.505 + 0.291i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-3.07 + 5.33i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (3.73 + 2.15i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + 0.435T + 29T^{2} \)
31 \( 1 + (-1.26 - 2.19i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (5.65 - 9.78i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 7.35iT - 41T^{2} \)
43 \( 1 - 5.80iT - 43T^{2} \)
47 \( 1 + (-5.78 + 10.0i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (1.55 + 2.69i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-1.73 - 3.00i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (8.99 + 5.19i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-8.52 + 4.92i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 - 9.96iT - 71T^{2} \)
73 \( 1 + (8.48 - 4.89i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.397 - 0.229i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + 2.59T + 83T^{2} \)
89 \( 1 + (8.55 + 4.94i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + 4.54iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26868032315461018657650697784, −9.517320483380932721221831261726, −8.724924930497671790525700281345, −8.193359014806216574932042231883, −7.03984878064138429624432859154, −6.23258650267539193696138988422, −5.18473240947939256646899729109, −4.37439883188040736035252330151, −3.21440342933127530425380718191, −1.13199219369193030973908726704, 1.42747652266068465734193393270, 2.06334771878622122453001655337, 3.78140005486574857981845541544, 4.41969111333366381119231629663, 5.61994972933546055765557827627, 7.24505093422419116895140097668, 7.70458216584139071539264597139, 8.685078148088543470546396724485, 9.552315658691274286267401492955, 10.39295363427268366571405206908

Graph of the $Z$-function along the critical line