L(s) = 1 | + (3.79 + 6.58i)3-s + (30.9 + 38.0i)7-s + (11.6 − 20.1i)9-s + (100. + 174. i)11-s − 86.3·13-s + (14.2 + 24.6i)17-s + (32.9 + 19.0i)19-s + (−132. + 347. i)21-s + (511. + 295. i)23-s + 792.·27-s − 997.·29-s + (−24.7 + 14.3i)31-s + (−767. + 1.32e3i)33-s + (1.02e3 + 590. i)37-s + (−328. − 568. i)39-s + ⋯ |
L(s) = 1 | + (0.422 + 0.731i)3-s + (0.630 + 0.775i)7-s + (0.143 − 0.248i)9-s + (0.834 + 1.44i)11-s − 0.511·13-s + (0.0492 + 0.0852i)17-s + (0.0912 + 0.0526i)19-s + (−0.301 + 0.788i)21-s + (0.966 + 0.558i)23-s + 1.08·27-s − 1.18·29-s + (−0.0258 + 0.0148i)31-s + (−0.704 + 1.22i)33-s + (0.746 + 0.431i)37-s + (−0.215 − 0.373i)39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.475−0.879i)Λ(5−s)
Λ(s)=(=(700s/2ΓC(s+2)L(s)(−0.475−0.879i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.475−0.879i
|
Analytic conductor: |
72.3589 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :2), −0.475−0.879i)
|
Particular Values
L(25) |
≈ |
2.757640268 |
L(21) |
≈ |
2.757640268 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(−30.9−38.0i)T |
good | 3 | 1+(−3.79−6.58i)T+(−40.5+70.1i)T2 |
| 11 | 1+(−100.−174.i)T+(−7.32e3+1.26e4i)T2 |
| 13 | 1+86.3T+2.85e4T2 |
| 17 | 1+(−14.2−24.6i)T+(−4.17e4+7.23e4i)T2 |
| 19 | 1+(−32.9−19.0i)T+(6.51e4+1.12e5i)T2 |
| 23 | 1+(−511.−295.i)T+(1.39e5+2.42e5i)T2 |
| 29 | 1+997.T+7.07e5T2 |
| 31 | 1+(24.7−14.3i)T+(4.61e5−7.99e5i)T2 |
| 37 | 1+(−1.02e3−590.i)T+(9.37e5+1.62e6i)T2 |
| 41 | 1−571.iT−2.82e6T2 |
| 43 | 1+1.29e3iT−3.41e6T2 |
| 47 | 1+(−975.+1.68e3i)T+(−2.43e6−4.22e6i)T2 |
| 53 | 1+(362.−209.i)T+(3.94e6−6.83e6i)T2 |
| 59 | 1+(−1.66e3+961.i)T+(6.05e6−1.04e7i)T2 |
| 61 | 1+(−1.88e3−1.09e3i)T+(6.92e6+1.19e7i)T2 |
| 67 | 1+(5.44e3−3.14e3i)T+(1.00e7−1.74e7i)T2 |
| 71 | 1−1.59e3T+2.54e7T2 |
| 73 | 1+(1.75e3+3.03e3i)T+(−1.41e7+2.45e7i)T2 |
| 79 | 1+(5.19e3−8.99e3i)T+(−1.94e7−3.37e7i)T2 |
| 83 | 1−1.12e4T+4.74e7T2 |
| 89 | 1+(−6.30e3−3.64e3i)T+(3.13e7+5.43e7i)T2 |
| 97 | 1+2.89e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.821119508800855304789994116615, −9.406363868714169905794569922514, −8.678011736682664966137740504961, −7.53867071239848208380773376557, −6.74614030247883696958108558720, −5.43382686096420510889026910744, −4.60177571891533713185657889877, −3.76287753246848777318467220216, −2.48806375483300385363383751614, −1.39369672849662514925908610367,
0.64271545147724007825936572053, 1.52469459011882792756359923605, 2.78501900139464078988482431107, 3.93323609478957426599219222041, 4.98910890027246688328813660305, 6.17124010028884561570905092556, 7.14321678168767358320378392996, 7.76330222511176730304613977723, 8.591942523332277927092119567508, 9.407426326371909797625376151659