L(s) = 1 | + (7.14 + 12.3i)3-s + (−32.4 + 36.7i)7-s + (−61.6 + 106. i)9-s + (91.7 + 158. i)11-s + 67.0·13-s + (128. + 223. i)17-s + (447. + 258. i)19-s + (−686. − 139. i)21-s + (775. + 447. i)23-s − 605.·27-s + 1.32e3·29-s + (179. − 103. i)31-s + (−1.31e3 + 2.27e3i)33-s + (−1.75e3 − 1.01e3i)37-s + (479. + 829. i)39-s + ⋯ |
L(s) = 1 | + (0.794 + 1.37i)3-s + (−0.662 + 0.749i)7-s + (−0.761 + 1.31i)9-s + (0.758 + 1.31i)11-s + 0.396·13-s + (0.446 + 0.773i)17-s + (1.23 + 0.715i)19-s + (−1.55 − 0.315i)21-s + (1.46 + 0.846i)23-s − 0.830·27-s + 1.57·29-s + (0.186 − 0.107i)31-s + (−1.20 + 2.08i)33-s + (−1.28 − 0.740i)37-s + (0.315 + 0.545i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 - 0.263i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.964 - 0.263i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(3.010885447\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.010885447\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (32.4 - 36.7i)T \) |
good | 3 | \( 1 + (-7.14 - 12.3i)T + (-40.5 + 70.1i)T^{2} \) |
| 11 | \( 1 + (-91.7 - 158. i)T + (-7.32e3 + 1.26e4i)T^{2} \) |
| 13 | \( 1 - 67.0T + 2.85e4T^{2} \) |
| 17 | \( 1 + (-128. - 223. i)T + (-4.17e4 + 7.23e4i)T^{2} \) |
| 19 | \( 1 + (-447. - 258. i)T + (6.51e4 + 1.12e5i)T^{2} \) |
| 23 | \( 1 + (-775. - 447. i)T + (1.39e5 + 2.42e5i)T^{2} \) |
| 29 | \( 1 - 1.32e3T + 7.07e5T^{2} \) |
| 31 | \( 1 + (-179. + 103. i)T + (4.61e5 - 7.99e5i)T^{2} \) |
| 37 | \( 1 + (1.75e3 + 1.01e3i)T + (9.37e5 + 1.62e6i)T^{2} \) |
| 41 | \( 1 + 1.97e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 + 1.27e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + (1.90e3 - 3.29e3i)T + (-2.43e6 - 4.22e6i)T^{2} \) |
| 53 | \( 1 + (2.70e3 - 1.55e3i)T + (3.94e6 - 6.83e6i)T^{2} \) |
| 59 | \( 1 + (-699. + 403. i)T + (6.05e6 - 1.04e7i)T^{2} \) |
| 61 | \( 1 + (3.75e3 + 2.16e3i)T + (6.92e6 + 1.19e7i)T^{2} \) |
| 67 | \( 1 + (-82.5 + 47.6i)T + (1.00e7 - 1.74e7i)T^{2} \) |
| 71 | \( 1 + 3.81e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (332. + 576. i)T + (-1.41e7 + 2.45e7i)T^{2} \) |
| 79 | \( 1 + (-1.23e3 + 2.14e3i)T + (-1.94e7 - 3.37e7i)T^{2} \) |
| 83 | \( 1 - 6.31e3T + 4.74e7T^{2} \) |
| 89 | \( 1 + (-5.60e3 - 3.23e3i)T + (3.13e7 + 5.43e7i)T^{2} \) |
| 97 | \( 1 - 4.76e3T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03051794592937191816430540370, −9.348783292643145295751491161490, −8.945984906258277382603116197704, −7.86018603815020302339049260113, −6.74493989334044237770734889457, −5.56636325370712558819094868894, −4.67239088939726622111055306626, −3.62361305076583296055541624184, −3.01847662407453733005827428067, −1.59020950309011475268485590058,
0.74389077310869351784058304423, 1.16829711945552189489592530926, 3.01945130112294894142731917304, 3.22153626965043291027569369234, 4.92783034250280850703908012212, 6.46747448365427362327139101594, 6.72369719222831856854745534807, 7.68546951460603752773308030917, 8.563188827774016977238778216846, 9.172305603046846467597109609172