L(s) = 1 | + (7.14 + 12.3i)3-s + (−32.4 + 36.7i)7-s + (−61.6 + 106. i)9-s + (91.7 + 158. i)11-s + 67.0·13-s + (128. + 223. i)17-s + (447. + 258. i)19-s + (−686. − 139. i)21-s + (775. + 447. i)23-s − 605.·27-s + 1.32e3·29-s + (179. − 103. i)31-s + (−1.31e3 + 2.27e3i)33-s + (−1.75e3 − 1.01e3i)37-s + (479. + 829. i)39-s + ⋯ |
L(s) = 1 | + (0.794 + 1.37i)3-s + (−0.662 + 0.749i)7-s + (−0.761 + 1.31i)9-s + (0.758 + 1.31i)11-s + 0.396·13-s + (0.446 + 0.773i)17-s + (1.23 + 0.715i)19-s + (−1.55 − 0.315i)21-s + (1.46 + 0.846i)23-s − 0.830·27-s + 1.57·29-s + (0.186 − 0.107i)31-s + (−1.20 + 2.08i)33-s + (−1.28 − 0.740i)37-s + (0.315 + 0.545i)39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.964−0.263i)Λ(5−s)
Λ(s)=(=(700s/2ΓC(s+2)L(s)(−0.964−0.263i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.964−0.263i
|
Analytic conductor: |
72.3589 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :2), −0.964−0.263i)
|
Particular Values
L(25) |
≈ |
3.010885447 |
L(21) |
≈ |
3.010885447 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(32.4−36.7i)T |
good | 3 | 1+(−7.14−12.3i)T+(−40.5+70.1i)T2 |
| 11 | 1+(−91.7−158.i)T+(−7.32e3+1.26e4i)T2 |
| 13 | 1−67.0T+2.85e4T2 |
| 17 | 1+(−128.−223.i)T+(−4.17e4+7.23e4i)T2 |
| 19 | 1+(−447.−258.i)T+(6.51e4+1.12e5i)T2 |
| 23 | 1+(−775.−447.i)T+(1.39e5+2.42e5i)T2 |
| 29 | 1−1.32e3T+7.07e5T2 |
| 31 | 1+(−179.+103.i)T+(4.61e5−7.99e5i)T2 |
| 37 | 1+(1.75e3+1.01e3i)T+(9.37e5+1.62e6i)T2 |
| 41 | 1+1.97e3iT−2.82e6T2 |
| 43 | 1+1.27e3iT−3.41e6T2 |
| 47 | 1+(1.90e3−3.29e3i)T+(−2.43e6−4.22e6i)T2 |
| 53 | 1+(2.70e3−1.55e3i)T+(3.94e6−6.83e6i)T2 |
| 59 | 1+(−699.+403.i)T+(6.05e6−1.04e7i)T2 |
| 61 | 1+(3.75e3+2.16e3i)T+(6.92e6+1.19e7i)T2 |
| 67 | 1+(−82.5+47.6i)T+(1.00e7−1.74e7i)T2 |
| 71 | 1+3.81e3T+2.54e7T2 |
| 73 | 1+(332.+576.i)T+(−1.41e7+2.45e7i)T2 |
| 79 | 1+(−1.23e3+2.14e3i)T+(−1.94e7−3.37e7i)T2 |
| 83 | 1−6.31e3T+4.74e7T2 |
| 89 | 1+(−5.60e3−3.23e3i)T+(3.13e7+5.43e7i)T2 |
| 97 | 1−4.76e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03051794592937191816430540370, −9.348783292643145295751491161490, −8.945984906258277382603116197704, −7.86018603815020302339049260113, −6.74493989334044237770734889457, −5.56636325370712558819094868894, −4.67239088939726622111055306626, −3.62361305076583296055541624184, −3.01847662407453733005827428067, −1.59020950309011475268485590058,
0.74389077310869351784058304423, 1.16829711945552189489592530926, 3.01945130112294894142731917304, 3.22153626965043291027569369234, 4.92783034250280850703908012212, 6.46747448365427362327139101594, 6.72369719222831856854745534807, 7.68546951460603752773308030917, 8.563188827774016977238778216846, 9.172305603046846467597109609172