Properties

Label 2-700-35.19-c4-0-18
Degree $2$
Conductor $700$
Sign $-0.964 - 0.263i$
Analytic cond. $72.3589$
Root an. cond. $8.50640$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (7.14 + 12.3i)3-s + (−32.4 + 36.7i)7-s + (−61.6 + 106. i)9-s + (91.7 + 158. i)11-s + 67.0·13-s + (128. + 223. i)17-s + (447. + 258. i)19-s + (−686. − 139. i)21-s + (775. + 447. i)23-s − 605.·27-s + 1.32e3·29-s + (179. − 103. i)31-s + (−1.31e3 + 2.27e3i)33-s + (−1.75e3 − 1.01e3i)37-s + (479. + 829. i)39-s + ⋯
L(s)  = 1  + (0.794 + 1.37i)3-s + (−0.662 + 0.749i)7-s + (−0.761 + 1.31i)9-s + (0.758 + 1.31i)11-s + 0.396·13-s + (0.446 + 0.773i)17-s + (1.23 + 0.715i)19-s + (−1.55 − 0.315i)21-s + (1.46 + 0.846i)23-s − 0.830·27-s + 1.57·29-s + (0.186 − 0.107i)31-s + (−1.20 + 2.08i)33-s + (−1.28 − 0.740i)37-s + (0.315 + 0.545i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 - 0.263i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.964 - 0.263i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $-0.964 - 0.263i$
Analytic conductor: \(72.3589\)
Root analytic conductor: \(8.50640\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{700} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :2),\ -0.964 - 0.263i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(3.010885447\)
\(L(\frac12)\) \(\approx\) \(3.010885447\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + (32.4 - 36.7i)T \)
good3 \( 1 + (-7.14 - 12.3i)T + (-40.5 + 70.1i)T^{2} \)
11 \( 1 + (-91.7 - 158. i)T + (-7.32e3 + 1.26e4i)T^{2} \)
13 \( 1 - 67.0T + 2.85e4T^{2} \)
17 \( 1 + (-128. - 223. i)T + (-4.17e4 + 7.23e4i)T^{2} \)
19 \( 1 + (-447. - 258. i)T + (6.51e4 + 1.12e5i)T^{2} \)
23 \( 1 + (-775. - 447. i)T + (1.39e5 + 2.42e5i)T^{2} \)
29 \( 1 - 1.32e3T + 7.07e5T^{2} \)
31 \( 1 + (-179. + 103. i)T + (4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 + (1.75e3 + 1.01e3i)T + (9.37e5 + 1.62e6i)T^{2} \)
41 \( 1 + 1.97e3iT - 2.82e6T^{2} \)
43 \( 1 + 1.27e3iT - 3.41e6T^{2} \)
47 \( 1 + (1.90e3 - 3.29e3i)T + (-2.43e6 - 4.22e6i)T^{2} \)
53 \( 1 + (2.70e3 - 1.55e3i)T + (3.94e6 - 6.83e6i)T^{2} \)
59 \( 1 + (-699. + 403. i)T + (6.05e6 - 1.04e7i)T^{2} \)
61 \( 1 + (3.75e3 + 2.16e3i)T + (6.92e6 + 1.19e7i)T^{2} \)
67 \( 1 + (-82.5 + 47.6i)T + (1.00e7 - 1.74e7i)T^{2} \)
71 \( 1 + 3.81e3T + 2.54e7T^{2} \)
73 \( 1 + (332. + 576. i)T + (-1.41e7 + 2.45e7i)T^{2} \)
79 \( 1 + (-1.23e3 + 2.14e3i)T + (-1.94e7 - 3.37e7i)T^{2} \)
83 \( 1 - 6.31e3T + 4.74e7T^{2} \)
89 \( 1 + (-5.60e3 - 3.23e3i)T + (3.13e7 + 5.43e7i)T^{2} \)
97 \( 1 - 4.76e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03051794592937191816430540370, −9.348783292643145295751491161490, −8.945984906258277382603116197704, −7.86018603815020302339049260113, −6.74493989334044237770734889457, −5.56636325370712558819094868894, −4.67239088939726622111055306626, −3.62361305076583296055541624184, −3.01847662407453733005827428067, −1.59020950309011475268485590058, 0.74389077310869351784058304423, 1.16829711945552189489592530926, 3.01945130112294894142731917304, 3.22153626965043291027569369234, 4.92783034250280850703908012212, 6.46747448365427362327139101594, 6.72369719222831856854745534807, 7.68546951460603752773308030917, 8.563188827774016977238778216846, 9.172305603046846467597109609172

Graph of the $Z$-function along the critical line