L(s) = 1 | + (−2.80 − 4.85i)3-s + (−48.2 + 8.43i)7-s + (24.8 − 42.9i)9-s + (91.4 + 158. i)11-s − 206.·13-s + (−72.5 − 125. i)17-s + (127. + 73.8i)19-s + (176. + 210. i)21-s + (530. + 306. i)23-s − 731.·27-s + 63.1·29-s + (−83.2 + 48.0i)31-s + (512. − 887. i)33-s + (650. + 375. i)37-s + (579. + 1.00e3i)39-s + ⋯ |
L(s) = 1 | + (−0.311 − 0.539i)3-s + (−0.985 + 0.172i)7-s + (0.306 − 0.530i)9-s + (0.755 + 1.30i)11-s − 1.22·13-s + (−0.250 − 0.434i)17-s + (0.354 + 0.204i)19-s + (0.399 + 0.477i)21-s + (1.00 + 0.578i)23-s − 1.00·27-s + 0.0750·29-s + (−0.0866 + 0.0500i)31-s + (0.470 − 0.814i)33-s + (0.475 + 0.274i)37-s + (0.380 + 0.659i)39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.0137+0.999i)Λ(5−s)
Λ(s)=(=(700s/2ΓC(s+2)L(s)(−0.0137+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.0137+0.999i
|
Analytic conductor: |
72.3589 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :2), −0.0137+0.999i)
|
Particular Values
L(25) |
≈ |
1.155374666 |
L(21) |
≈ |
1.155374666 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(48.2−8.43i)T |
good | 3 | 1+(2.80+4.85i)T+(−40.5+70.1i)T2 |
| 11 | 1+(−91.4−158.i)T+(−7.32e3+1.26e4i)T2 |
| 13 | 1+206.T+2.85e4T2 |
| 17 | 1+(72.5+125.i)T+(−4.17e4+7.23e4i)T2 |
| 19 | 1+(−127.−73.8i)T+(6.51e4+1.12e5i)T2 |
| 23 | 1+(−530.−306.i)T+(1.39e5+2.42e5i)T2 |
| 29 | 1−63.1T+7.07e5T2 |
| 31 | 1+(83.2−48.0i)T+(4.61e5−7.99e5i)T2 |
| 37 | 1+(−650.−375.i)T+(9.37e5+1.62e6i)T2 |
| 41 | 1+1.92e3iT−2.82e6T2 |
| 43 | 1−1.83e3iT−3.41e6T2 |
| 47 | 1+(−1.06e3+1.84e3i)T+(−2.43e6−4.22e6i)T2 |
| 53 | 1+(3.29e3−1.90e3i)T+(3.94e6−6.83e6i)T2 |
| 59 | 1+(−2.31e3+1.33e3i)T+(6.05e6−1.04e7i)T2 |
| 61 | 1+(−4.02e3−2.32e3i)T+(6.92e6+1.19e7i)T2 |
| 67 | 1+(−1.53e3+886.i)T+(1.00e7−1.74e7i)T2 |
| 71 | 1+7.31e3T+2.54e7T2 |
| 73 | 1+(4.62e3+8.01e3i)T+(−1.41e7+2.45e7i)T2 |
| 79 | 1+(−4.43e3+7.67e3i)T+(−1.94e7−3.37e7i)T2 |
| 83 | 1−4.44e3T+4.74e7T2 |
| 89 | 1+(120.+69.5i)T+(3.13e7+5.43e7i)T2 |
| 97 | 1+2.11e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.512741555558100139325338660013, −9.165131874865324621324179948378, −7.47845146398820059501032991159, −7.05319313330669140601197768923, −6.31135972603047544555923242152, −5.15443989685876873019391166842, −4.09280431080678688499083341658, −2.89148689966634532534135817190, −1.66655893134059784903955175677, −0.37362184960816110361083052265,
0.851579306327711210762821331526, 2.55819898459292282999754080067, 3.60579897311708397061812239958, 4.58922879166713071643097280978, 5.57698649410427798668113087922, 6.51895944677519678208218303766, 7.34049840028916880375627624078, 8.496243453946845125492421694171, 9.406865554832794034508818400249, 10.02684368612433888157295840066