Properties

Label 2-700-35.19-c4-0-25
Degree $2$
Conductor $700$
Sign $-0.0137 + 0.999i$
Analytic cond. $72.3589$
Root an. cond. $8.50640$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.80 − 4.85i)3-s + (−48.2 + 8.43i)7-s + (24.8 − 42.9i)9-s + (91.4 + 158. i)11-s − 206.·13-s + (−72.5 − 125. i)17-s + (127. + 73.8i)19-s + (176. + 210. i)21-s + (530. + 306. i)23-s − 731.·27-s + 63.1·29-s + (−83.2 + 48.0i)31-s + (512. − 887. i)33-s + (650. + 375. i)37-s + (579. + 1.00e3i)39-s + ⋯
L(s)  = 1  + (−0.311 − 0.539i)3-s + (−0.985 + 0.172i)7-s + (0.306 − 0.530i)9-s + (0.755 + 1.30i)11-s − 1.22·13-s + (−0.250 − 0.434i)17-s + (0.354 + 0.204i)19-s + (0.399 + 0.477i)21-s + (1.00 + 0.578i)23-s − 1.00·27-s + 0.0750·29-s + (−0.0866 + 0.0500i)31-s + (0.470 − 0.814i)33-s + (0.475 + 0.274i)37-s + (0.380 + 0.659i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0137 + 0.999i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.0137 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $-0.0137 + 0.999i$
Analytic conductor: \(72.3589\)
Root analytic conductor: \(8.50640\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{700} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :2),\ -0.0137 + 0.999i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.155374666\)
\(L(\frac12)\) \(\approx\) \(1.155374666\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + (48.2 - 8.43i)T \)
good3 \( 1 + (2.80 + 4.85i)T + (-40.5 + 70.1i)T^{2} \)
11 \( 1 + (-91.4 - 158. i)T + (-7.32e3 + 1.26e4i)T^{2} \)
13 \( 1 + 206.T + 2.85e4T^{2} \)
17 \( 1 + (72.5 + 125. i)T + (-4.17e4 + 7.23e4i)T^{2} \)
19 \( 1 + (-127. - 73.8i)T + (6.51e4 + 1.12e5i)T^{2} \)
23 \( 1 + (-530. - 306. i)T + (1.39e5 + 2.42e5i)T^{2} \)
29 \( 1 - 63.1T + 7.07e5T^{2} \)
31 \( 1 + (83.2 - 48.0i)T + (4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 + (-650. - 375. i)T + (9.37e5 + 1.62e6i)T^{2} \)
41 \( 1 + 1.92e3iT - 2.82e6T^{2} \)
43 \( 1 - 1.83e3iT - 3.41e6T^{2} \)
47 \( 1 + (-1.06e3 + 1.84e3i)T + (-2.43e6 - 4.22e6i)T^{2} \)
53 \( 1 + (3.29e3 - 1.90e3i)T + (3.94e6 - 6.83e6i)T^{2} \)
59 \( 1 + (-2.31e3 + 1.33e3i)T + (6.05e6 - 1.04e7i)T^{2} \)
61 \( 1 + (-4.02e3 - 2.32e3i)T + (6.92e6 + 1.19e7i)T^{2} \)
67 \( 1 + (-1.53e3 + 886. i)T + (1.00e7 - 1.74e7i)T^{2} \)
71 \( 1 + 7.31e3T + 2.54e7T^{2} \)
73 \( 1 + (4.62e3 + 8.01e3i)T + (-1.41e7 + 2.45e7i)T^{2} \)
79 \( 1 + (-4.43e3 + 7.67e3i)T + (-1.94e7 - 3.37e7i)T^{2} \)
83 \( 1 - 4.44e3T + 4.74e7T^{2} \)
89 \( 1 + (120. + 69.5i)T + (3.13e7 + 5.43e7i)T^{2} \)
97 \( 1 + 2.11e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.512741555558100139325338660013, −9.165131874865324621324179948378, −7.47845146398820059501032991159, −7.05319313330669140601197768923, −6.31135972603047544555923242152, −5.15443989685876873019391166842, −4.09280431080678688499083341658, −2.89148689966634532534135817190, −1.66655893134059784903955175677, −0.37362184960816110361083052265, 0.851579306327711210762821331526, 2.55819898459292282999754080067, 3.60579897311708397061812239958, 4.58922879166713071643097280978, 5.57698649410427798668113087922, 6.51895944677519678208218303766, 7.34049840028916880375627624078, 8.496243453946845125492421694171, 9.406865554832794034508818400249, 10.02684368612433888157295840066

Graph of the $Z$-function along the critical line