Properties

Label 2-700-35.19-c4-0-29
Degree $2$
Conductor $700$
Sign $0.332 + 0.943i$
Analytic cond. $72.3589$
Root an. cond. $8.50640$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.784 − 1.35i)3-s + (−24.5 − 42.3i)7-s + (39.2 − 68.0i)9-s + (−11.7 − 20.3i)11-s + 136.·13-s + (131. + 227. i)17-s + (387. + 223. i)19-s + (−38.3 + 66.6i)21-s + (648. + 374. i)23-s − 250.·27-s − 406.·29-s + (−584. + 337. i)31-s + (−18.4 + 31.9i)33-s + (645. + 372. i)37-s + (−106. − 185. i)39-s + ⋯
L(s)  = 1  + (−0.0871 − 0.151i)3-s + (−0.501 − 0.865i)7-s + (0.484 − 0.839i)9-s + (−0.0971 − 0.168i)11-s + 0.806·13-s + (0.454 + 0.786i)17-s + (1.07 + 0.619i)19-s + (−0.0869 + 0.151i)21-s + (1.22 + 0.708i)23-s − 0.343·27-s − 0.483·29-s + (−0.607 + 0.350i)31-s + (−0.0169 + 0.0293i)33-s + (0.471 + 0.272i)37-s + (−0.0702 − 0.121i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.332 + 0.943i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.332 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.332 + 0.943i$
Analytic conductor: \(72.3589\)
Root analytic conductor: \(8.50640\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{700} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :2),\ 0.332 + 0.943i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.112261209\)
\(L(\frac12)\) \(\approx\) \(2.112261209\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + (24.5 + 42.3i)T \)
good3 \( 1 + (0.784 + 1.35i)T + (-40.5 + 70.1i)T^{2} \)
11 \( 1 + (11.7 + 20.3i)T + (-7.32e3 + 1.26e4i)T^{2} \)
13 \( 1 - 136.T + 2.85e4T^{2} \)
17 \( 1 + (-131. - 227. i)T + (-4.17e4 + 7.23e4i)T^{2} \)
19 \( 1 + (-387. - 223. i)T + (6.51e4 + 1.12e5i)T^{2} \)
23 \( 1 + (-648. - 374. i)T + (1.39e5 + 2.42e5i)T^{2} \)
29 \( 1 + 406.T + 7.07e5T^{2} \)
31 \( 1 + (584. - 337. i)T + (4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 + (-645. - 372. i)T + (9.37e5 + 1.62e6i)T^{2} \)
41 \( 1 + 2.47e3iT - 2.82e6T^{2} \)
43 \( 1 + 2.63e3iT - 3.41e6T^{2} \)
47 \( 1 + (334. - 579. i)T + (-2.43e6 - 4.22e6i)T^{2} \)
53 \( 1 + (1.75e3 - 1.01e3i)T + (3.94e6 - 6.83e6i)T^{2} \)
59 \( 1 + (-1.01e3 + 585. i)T + (6.05e6 - 1.04e7i)T^{2} \)
61 \( 1 + (2.02e3 + 1.16e3i)T + (6.92e6 + 1.19e7i)T^{2} \)
67 \( 1 + (-6.54e3 + 3.77e3i)T + (1.00e7 - 1.74e7i)T^{2} \)
71 \( 1 - 7.57e3T + 2.54e7T^{2} \)
73 \( 1 + (-1.89e3 - 3.28e3i)T + (-1.41e7 + 2.45e7i)T^{2} \)
79 \( 1 + (-3.89e3 + 6.75e3i)T + (-1.94e7 - 3.37e7i)T^{2} \)
83 \( 1 - 2.18e3T + 4.74e7T^{2} \)
89 \( 1 + (8.05e3 + 4.64e3i)T + (3.13e7 + 5.43e7i)T^{2} \)
97 \( 1 - 9.98e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.689347806033623953510820598783, −8.981220274709314256636672436479, −7.78704622309247144140991889484, −7.07212974545706711247335417261, −6.22022921161667057831606038491, −5.27968105974971188673304065730, −3.74843669179406048002676374853, −3.45672876644226539948977370072, −1.51981169596749391062039551301, −0.64188659835651935142996673318, 1.00010464750136170943107109039, 2.41767808830725214311194952972, 3.34485570072541265723997828397, 4.75040963051655304827739766052, 5.41918981130907074703464210600, 6.49322537729246587832109328994, 7.42290920277910531947998175252, 8.322970125763891306364428778031, 9.375388265137903528482307820071, 9.803539455365964199905802129884

Graph of the $Z$-function along the critical line