L(s) = 1 | + (−0.784 − 1.35i)3-s + (−24.5 − 42.3i)7-s + (39.2 − 68.0i)9-s + (−11.7 − 20.3i)11-s + 136.·13-s + (131. + 227. i)17-s + (387. + 223. i)19-s + (−38.3 + 66.6i)21-s + (648. + 374. i)23-s − 250.·27-s − 406.·29-s + (−584. + 337. i)31-s + (−18.4 + 31.9i)33-s + (645. + 372. i)37-s + (−106. − 185. i)39-s + ⋯ |
L(s) = 1 | + (−0.0871 − 0.151i)3-s + (−0.501 − 0.865i)7-s + (0.484 − 0.839i)9-s + (−0.0971 − 0.168i)11-s + 0.806·13-s + (0.454 + 0.786i)17-s + (1.07 + 0.619i)19-s + (−0.0869 + 0.151i)21-s + (1.22 + 0.708i)23-s − 0.343·27-s − 0.483·29-s + (−0.607 + 0.350i)31-s + (−0.0169 + 0.0293i)33-s + (0.471 + 0.272i)37-s + (−0.0702 − 0.121i)39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.332+0.943i)Λ(5−s)
Λ(s)=(=(700s/2ΓC(s+2)L(s)(0.332+0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.332+0.943i
|
Analytic conductor: |
72.3589 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :2), 0.332+0.943i)
|
Particular Values
L(25) |
≈ |
2.112261209 |
L(21) |
≈ |
2.112261209 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(24.5+42.3i)T |
good | 3 | 1+(0.784+1.35i)T+(−40.5+70.1i)T2 |
| 11 | 1+(11.7+20.3i)T+(−7.32e3+1.26e4i)T2 |
| 13 | 1−136.T+2.85e4T2 |
| 17 | 1+(−131.−227.i)T+(−4.17e4+7.23e4i)T2 |
| 19 | 1+(−387.−223.i)T+(6.51e4+1.12e5i)T2 |
| 23 | 1+(−648.−374.i)T+(1.39e5+2.42e5i)T2 |
| 29 | 1+406.T+7.07e5T2 |
| 31 | 1+(584.−337.i)T+(4.61e5−7.99e5i)T2 |
| 37 | 1+(−645.−372.i)T+(9.37e5+1.62e6i)T2 |
| 41 | 1+2.47e3iT−2.82e6T2 |
| 43 | 1+2.63e3iT−3.41e6T2 |
| 47 | 1+(334.−579.i)T+(−2.43e6−4.22e6i)T2 |
| 53 | 1+(1.75e3−1.01e3i)T+(3.94e6−6.83e6i)T2 |
| 59 | 1+(−1.01e3+585.i)T+(6.05e6−1.04e7i)T2 |
| 61 | 1+(2.02e3+1.16e3i)T+(6.92e6+1.19e7i)T2 |
| 67 | 1+(−6.54e3+3.77e3i)T+(1.00e7−1.74e7i)T2 |
| 71 | 1−7.57e3T+2.54e7T2 |
| 73 | 1+(−1.89e3−3.28e3i)T+(−1.41e7+2.45e7i)T2 |
| 79 | 1+(−3.89e3+6.75e3i)T+(−1.94e7−3.37e7i)T2 |
| 83 | 1−2.18e3T+4.74e7T2 |
| 89 | 1+(8.05e3+4.64e3i)T+(3.13e7+5.43e7i)T2 |
| 97 | 1−9.98e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.689347806033623953510820598783, −8.981220274709314256636672436479, −7.78704622309247144140991889484, −7.07212974545706711247335417261, −6.22022921161667057831606038491, −5.27968105974971188673304065730, −3.74843669179406048002676374853, −3.45672876644226539948977370072, −1.51981169596749391062039551301, −0.64188659835651935142996673318,
1.00010464750136170943107109039, 2.41767808830725214311194952972, 3.34485570072541265723997828397, 4.75040963051655304827739766052, 5.41918981130907074703464210600, 6.49322537729246587832109328994, 7.42290920277910531947998175252, 8.322970125763891306364428778031, 9.375388265137903528482307820071, 9.803539455365964199905802129884