L(s) = 1 | + (−8.52 − 14.7i)3-s + (40.1 − 28.1i)7-s + (−104. + 181. i)9-s + (−93.3 − 161. i)11-s + 200.·13-s + (−55.0 − 95.3i)17-s + (226. + 130. i)19-s + (−757. − 352. i)21-s + (−385. − 222. i)23-s + 2.18e3·27-s − 734.·29-s + (−406. + 234. i)31-s + (−1.59e3 + 2.75e3i)33-s + (−1.74e3 − 1.00e3i)37-s + (−1.71e3 − 2.96e3i)39-s + ⋯ |
L(s) = 1 | + (−0.946 − 1.64i)3-s + (0.818 − 0.574i)7-s + (−1.29 + 2.23i)9-s + (−0.771 − 1.33i)11-s + 1.18·13-s + (−0.190 − 0.329i)17-s + (0.626 + 0.361i)19-s + (−1.71 − 0.799i)21-s + (−0.727 − 0.420i)23-s + 3.00·27-s − 0.873·29-s + (−0.422 + 0.244i)31-s + (−1.46 + 2.52i)33-s + (−1.27 − 0.735i)37-s + (−1.12 − 1.94i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.481 - 0.876i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.481 - 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.03873714477\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.03873714477\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-40.1 + 28.1i)T \) |
good | 3 | \( 1 + (8.52 + 14.7i)T + (-40.5 + 70.1i)T^{2} \) |
| 11 | \( 1 + (93.3 + 161. i)T + (-7.32e3 + 1.26e4i)T^{2} \) |
| 13 | \( 1 - 200.T + 2.85e4T^{2} \) |
| 17 | \( 1 + (55.0 + 95.3i)T + (-4.17e4 + 7.23e4i)T^{2} \) |
| 19 | \( 1 + (-226. - 130. i)T + (6.51e4 + 1.12e5i)T^{2} \) |
| 23 | \( 1 + (385. + 222. i)T + (1.39e5 + 2.42e5i)T^{2} \) |
| 29 | \( 1 + 734.T + 7.07e5T^{2} \) |
| 31 | \( 1 + (406. - 234. i)T + (4.61e5 - 7.99e5i)T^{2} \) |
| 37 | \( 1 + (1.74e3 + 1.00e3i)T + (9.37e5 + 1.62e6i)T^{2} \) |
| 41 | \( 1 + 46.3iT - 2.82e6T^{2} \) |
| 43 | \( 1 - 2.74e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + (2.14e3 - 3.71e3i)T + (-2.43e6 - 4.22e6i)T^{2} \) |
| 53 | \( 1 + (2.85e3 - 1.64e3i)T + (3.94e6 - 6.83e6i)T^{2} \) |
| 59 | \( 1 + (-207. + 119. i)T + (6.05e6 - 1.04e7i)T^{2} \) |
| 61 | \( 1 + (2.36e3 + 1.36e3i)T + (6.92e6 + 1.19e7i)T^{2} \) |
| 67 | \( 1 + (-4.32e3 + 2.49e3i)T + (1.00e7 - 1.74e7i)T^{2} \) |
| 71 | \( 1 + 2.96e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (2.08e3 + 3.60e3i)T + (-1.41e7 + 2.45e7i)T^{2} \) |
| 79 | \( 1 + (-1.76e3 + 3.05e3i)T + (-1.94e7 - 3.37e7i)T^{2} \) |
| 83 | \( 1 + 2.15e3T + 4.74e7T^{2} \) |
| 89 | \( 1 + (8.80e3 + 5.08e3i)T + (3.13e7 + 5.43e7i)T^{2} \) |
| 97 | \( 1 - 1.20e4T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.778658390587201294204727335781, −7.918924236319869074821856277381, −7.55026009034975205299663902481, −6.33476337397327589801005023508, −5.81267519886885297523542820227, −4.88155401814379669647413819182, −3.26837589391737576220336067425, −1.81465262854078303684712654760, −1.00315600308214764943368121749, −0.01188622227613067052854266146,
1.81957876509016754811152417419, 3.44749953374816190913432521748, 4.33937054026669557792651656144, 5.23756277113857683739319712095, 5.65450397183183544988223500394, 6.91540341942404823271912165411, 8.243021402107667867685429430687, 9.054937135511830020222735769340, 9.923974898270311712392853141870, 10.50339078694995105223684667581