L(s) = 1 | − i·3-s − i·7-s − 11-s − i·13-s + i·17-s − 21-s − i·27-s + 29-s + i·33-s − 39-s + i·47-s − 49-s + 51-s + 2·71-s + 2i·73-s + ⋯ |
L(s) = 1 | − i·3-s − i·7-s − 11-s − i·13-s + i·17-s − 21-s − i·27-s + 29-s + i·33-s − 39-s + i·47-s − 49-s + 51-s + 2·71-s + 2i·73-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)iΛ(1−s)
Λ(s)=(=(700s/2ΓC(s)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
i
|
Analytic conductor: |
0.349345 |
Root analytic conductor: |
0.591054 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :0), i)
|
Particular Values
L(21) |
≈ |
0.9140492637 |
L(21) |
≈ |
0.9140492637 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+iT |
good | 3 | 1+iT−T2 |
| 11 | 1+T+T2 |
| 13 | 1+iT−T2 |
| 17 | 1−iT−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 29 | 1−T+T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1−iT−T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+T2 |
| 71 | 1−2T+T2 |
| 73 | 1−2iT−T2 |
| 79 | 1−T+T2 |
| 83 | 1−2iT−T2 |
| 89 | 1−T2 |
| 97 | 1−iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46066348006947616896795504313, −9.824947976513585554972070817681, −8.254657621720474302069963053615, −7.891889877853086117941671628195, −7.01449192328764480481317833813, −6.18675533791111212741284877628, −5.05183757213150740405063828488, −3.85203172566153858658551399481, −2.54749219910442087433699752843, −1.09331339495056724340748796325,
2.22972192861995293180341740539, 3.36215374059236355005664948042, 4.67109932167493845430517850771, 5.17433253965694296237475362312, 6.35368728470318625647203523095, 7.42766257220495881120390361797, 8.541282495342680240225583349039, 9.270719671494445086390622554280, 9.931782335995926821818685202912, 10.76035020396532464080243620846