L(s) = 1 | + 2-s + 4-s − 7-s + 8-s + 3·11-s + 13-s − 14-s + 16-s + 6·17-s + 2·19-s + 3·22-s + 3·23-s − 5·25-s + 26-s − 28-s + 3·29-s + 5·31-s + 32-s + 6·34-s − 7·37-s + 2·38-s − 6·41-s − 43-s + 3·44-s + 3·46-s − 6·49-s − 5·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s + 0.904·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.458·19-s + 0.639·22-s + 0.625·23-s − 25-s + 0.196·26-s − 0.188·28-s + 0.557·29-s + 0.898·31-s + 0.176·32-s + 1.02·34-s − 1.15·37-s + 0.324·38-s − 0.937·41-s − 0.152·43-s + 0.452·44-s + 0.442·46-s − 6/7·49-s − 0.707·50-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.438724023 |
L(21) |
≈ |
2.438724023 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 13 | 1−T |
good | 5 | 1+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1−3T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1+7T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−9T+pT2 |
| 59 | 1+3T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1+9T+pT2 |
| 89 | 1−3T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40177030669352365127911103866, −9.756591550306942426380153961599, −8.714102464355361131347704225310, −7.68464846057382852123303689608, −6.75704327285852474476313882161, −5.94796173241577251258054909189, −5.00762274654052120160679380267, −3.82098806276952507517625807862, −3.04361032800015499774600610053, −1.39366852032118049822765695687,
1.39366852032118049822765695687, 3.04361032800015499774600610053, 3.82098806276952507517625807862, 5.00762274654052120160679380267, 5.94796173241577251258054909189, 6.75704327285852474476313882161, 7.68464846057382852123303689608, 8.714102464355361131347704225310, 9.756591550306942426380153961599, 10.40177030669352365127911103866