Properties

Label 2-702-1.1-c1-0-5
Degree $2$
Conductor $702$
Sign $1$
Analytic cond. $5.60549$
Root an. cond. $2.36759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s + 3·11-s + 13-s − 14-s + 16-s + 6·17-s + 2·19-s + 3·22-s + 3·23-s − 5·25-s + 26-s − 28-s + 3·29-s + 5·31-s + 32-s + 6·34-s − 7·37-s + 2·38-s − 6·41-s − 43-s + 3·44-s + 3·46-s − 6·49-s − 5·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s + 0.904·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.458·19-s + 0.639·22-s + 0.625·23-s − 25-s + 0.196·26-s − 0.188·28-s + 0.557·29-s + 0.898·31-s + 0.176·32-s + 1.02·34-s − 1.15·37-s + 0.324·38-s − 0.937·41-s − 0.152·43-s + 0.452·44-s + 0.442·46-s − 6/7·49-s − 0.707·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(702\)    =    \(2 \cdot 3^{3} \cdot 13\)
Sign: $1$
Analytic conductor: \(5.60549\)
Root analytic conductor: \(2.36759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.438724023\)
\(L(\frac12)\) \(\approx\) \(2.438724023\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40177030669352365127911103866, −9.756591550306942426380153961599, −8.714102464355361131347704225310, −7.68464846057382852123303689608, −6.75704327285852474476313882161, −5.94796173241577251258054909189, −5.00762274654052120160679380267, −3.82098806276952507517625807862, −3.04361032800015499774600610053, −1.39366852032118049822765695687, 1.39366852032118049822765695687, 3.04361032800015499774600610053, 3.82098806276952507517625807862, 5.00762274654052120160679380267, 5.94796173241577251258054909189, 6.75704327285852474476313882161, 7.68464846057382852123303689608, 8.714102464355361131347704225310, 9.756591550306942426380153961599, 10.40177030669352365127911103866

Graph of the $Z$-function along the critical line