L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.419 − 0.242i)5-s + (−4.37 + 2.52i)7-s − 0.999i·8-s − 0.484·10-s + (−2.78 + 1.60i)11-s + (−2.69 + 2.39i)13-s + (−2.52 + 4.37i)14-s + (−0.5 − 0.866i)16-s − 4.20·17-s + 3.21i·19-s + (−0.419 + 0.242i)20-s + (−1.60 + 2.78i)22-s + (3.13 − 5.43i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.187 − 0.108i)5-s + (−1.65 + 0.955i)7-s − 0.353i·8-s − 0.153·10-s + (−0.838 + 0.484i)11-s + (−0.748 + 0.663i)13-s + (−0.675 + 1.16i)14-s + (−0.125 − 0.216i)16-s − 1.01·17-s + 0.736i·19-s + (−0.0937 + 0.0541i)20-s + (−0.342 + 0.592i)22-s + (0.653 − 1.13i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.631 - 0.775i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.204226 + 0.429484i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.204226 + 0.429484i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.69 - 2.39i)T \) |
good | 5 | \( 1 + (0.419 + 0.242i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (4.37 - 2.52i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.78 - 1.60i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 4.20T + 17T^{2} \) |
| 19 | \( 1 - 3.21iT - 19T^{2} \) |
| 23 | \( 1 + (-3.13 + 5.43i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.29 - 3.97i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.61 - 3.24i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.08iT - 37T^{2} \) |
| 41 | \( 1 + (9.57 + 5.52i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.73 - 8.19i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.57 - 2.64i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6.41T + 53T^{2} \) |
| 59 | \( 1 + (-3.13 - 1.81i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.500 - 0.867i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.936 + 0.540i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.63iT - 71T^{2} \) |
| 73 | \( 1 + 0.325iT - 73T^{2} \) |
| 79 | \( 1 + (-3.91 - 6.78i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.08 - 2.93i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 8.42iT - 89T^{2} \) |
| 97 | \( 1 + (11.3 - 6.52i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.67278379429178454209509857120, −9.960534285918928967329891464562, −9.234592667267716340702479494409, −8.284045664379738113592657519627, −6.83773440265483659388760886241, −6.40255903333052342627001268063, −5.22828561398951896532092644053, −4.33112163263410638532679615608, −3.01015524717142024409517368296, −2.30155635757963874050790962650,
0.18386750712169190327341470860, 2.77045732956011498307999739790, 3.45884369877892890602650899441, 4.61157382350703034750714461498, 5.67646364497401602550835552117, 6.68108029837614979575747574003, 7.25252872878618271059258547667, 8.170490247908312765425973785015, 9.434981011887080932736844173018, 10.12104699506930228942792779353