L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.419 − 0.242i)5-s + (−4.37 + 2.52i)7-s − 0.999i·8-s − 0.484·10-s + (−2.78 + 1.60i)11-s + (−2.69 + 2.39i)13-s + (−2.52 + 4.37i)14-s + (−0.5 − 0.866i)16-s − 4.20·17-s + 3.21i·19-s + (−0.419 + 0.242i)20-s + (−1.60 + 2.78i)22-s + (3.13 − 5.43i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.187 − 0.108i)5-s + (−1.65 + 0.955i)7-s − 0.353i·8-s − 0.153·10-s + (−0.838 + 0.484i)11-s + (−0.748 + 0.663i)13-s + (−0.675 + 1.16i)14-s + (−0.125 − 0.216i)16-s − 1.01·17-s + 0.736i·19-s + (−0.0937 + 0.0541i)20-s + (−0.342 + 0.592i)22-s + (0.653 − 1.13i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(−0.631−0.775i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(−0.631−0.775i)Λ(1−s)
Degree: |
2 |
Conductor: |
702
= 2⋅33⋅13
|
Sign: |
−0.631−0.775i
|
Analytic conductor: |
5.60549 |
Root analytic conductor: |
2.36759 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ702(415,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 702, ( :1/2), −0.631−0.775i)
|
Particular Values
L(1) |
≈ |
0.204226+0.429484i |
L(21) |
≈ |
0.204226+0.429484i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1 |
| 13 | 1+(2.69−2.39i)T |
good | 5 | 1+(0.419+0.242i)T+(2.5+4.33i)T2 |
| 7 | 1+(4.37−2.52i)T+(3.5−6.06i)T2 |
| 11 | 1+(2.78−1.60i)T+(5.5−9.52i)T2 |
| 17 | 1+4.20T+17T2 |
| 19 | 1−3.21iT−19T2 |
| 23 | 1+(−3.13+5.43i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.29−3.97i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−5.61−3.24i)T+(15.5+26.8i)T2 |
| 37 | 1+2.08iT−37T2 |
| 41 | 1+(9.57+5.52i)T+(20.5+35.5i)T2 |
| 43 | 1+(−4.73−8.19i)T+(−21.5+37.2i)T2 |
| 47 | 1+(4.57−2.64i)T+(23.5−40.7i)T2 |
| 53 | 1+6.41T+53T2 |
| 59 | 1+(−3.13−1.81i)T+(29.5+51.0i)T2 |
| 61 | 1+(−0.500−0.867i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.936+0.540i)T+(33.5+58.0i)T2 |
| 71 | 1+4.63iT−71T2 |
| 73 | 1+0.325iT−73T2 |
| 79 | 1+(−3.91−6.78i)T+(−39.5+68.4i)T2 |
| 83 | 1+(5.08−2.93i)T+(41.5−71.8i)T2 |
| 89 | 1−8.42iT−89T2 |
| 97 | 1+(11.3−6.52i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.67278379429178454209509857120, −9.960534285918928967329891464562, −9.234592667267716340702479494409, −8.284045664379738113592657519627, −6.83773440265483659388760886241, −6.40255903333052342627001268063, −5.22828561398951896532092644053, −4.33112163263410638532679615608, −3.01015524717142024409517368296, −2.30155635757963874050790962650,
0.18386750712169190327341470860, 2.77045732956011498307999739790, 3.45884369877892890602650899441, 4.61157382350703034750714461498, 5.67646364497401602550835552117, 6.68108029837614979575747574003, 7.25252872878618271059258547667, 8.170490247908312765425973785015, 9.434981011887080932736844173018, 10.12104699506930228942792779353