Properties

Label 2-704-1.1-c5-0-21
Degree $2$
Conductor $704$
Sign $1$
Analytic cond. $112.910$
Root an. cond. $10.6259$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.46·3-s + 22.1·5-s − 246.·7-s − 201.·9-s + 121·11-s + 495.·13-s + 142.·15-s + 84.6·17-s + 2.83e3·19-s − 1.59e3·21-s − 3.45e3·23-s − 2.63e3·25-s − 2.87e3·27-s − 4.59e3·29-s + 5.52e3·31-s + 781.·33-s − 5.45e3·35-s − 5.55e3·37-s + 3.20e3·39-s − 2.05e4·41-s + 4.69e3·43-s − 4.45e3·45-s − 1.09e4·47-s + 4.40e4·49-s + 547.·51-s + 1.33e3·53-s + 2.67e3·55-s + ⋯
L(s)  = 1  + 0.414·3-s + 0.395·5-s − 1.90·7-s − 0.828·9-s + 0.301·11-s + 0.813·13-s + 0.164·15-s + 0.0710·17-s + 1.80·19-s − 0.789·21-s − 1.36·23-s − 0.843·25-s − 0.757·27-s − 1.01·29-s + 1.03·31-s + 0.124·33-s − 0.753·35-s − 0.667·37-s + 0.337·39-s − 1.91·41-s + 0.387·43-s − 0.327·45-s − 0.725·47-s + 2.62·49-s + 0.0294·51-s + 0.0653·53-s + 0.119·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(704\)    =    \(2^{6} \cdot 11\)
Sign: $1$
Analytic conductor: \(112.910\)
Root analytic conductor: \(10.6259\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 704,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.625908379\)
\(L(\frac12)\) \(\approx\) \(1.625908379\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 - 121T \)
good3 \( 1 - 6.46T + 243T^{2} \)
5 \( 1 - 22.1T + 3.12e3T^{2} \)
7 \( 1 + 246.T + 1.68e4T^{2} \)
13 \( 1 - 495.T + 3.71e5T^{2} \)
17 \( 1 - 84.6T + 1.41e6T^{2} \)
19 \( 1 - 2.83e3T + 2.47e6T^{2} \)
23 \( 1 + 3.45e3T + 6.43e6T^{2} \)
29 \( 1 + 4.59e3T + 2.05e7T^{2} \)
31 \( 1 - 5.52e3T + 2.86e7T^{2} \)
37 \( 1 + 5.55e3T + 6.93e7T^{2} \)
41 \( 1 + 2.05e4T + 1.15e8T^{2} \)
43 \( 1 - 4.69e3T + 1.47e8T^{2} \)
47 \( 1 + 1.09e4T + 2.29e8T^{2} \)
53 \( 1 - 1.33e3T + 4.18e8T^{2} \)
59 \( 1 - 4.19e4T + 7.14e8T^{2} \)
61 \( 1 - 2.60e4T + 8.44e8T^{2} \)
67 \( 1 - 2.72e4T + 1.35e9T^{2} \)
71 \( 1 + 3.45e4T + 1.80e9T^{2} \)
73 \( 1 - 5.23e4T + 2.07e9T^{2} \)
79 \( 1 - 8.30e3T + 3.07e9T^{2} \)
83 \( 1 - 2.15e4T + 3.93e9T^{2} \)
89 \( 1 - 8.65e4T + 5.58e9T^{2} \)
97 \( 1 - 6.47e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.744557719340947110103431364614, −8.961900971704783088623901552830, −8.055214595563953741216061111780, −6.91951309314448458916471192252, −6.09401404798080714234353605052, −5.48961937291403889921831847875, −3.64236917900063615445330919696, −3.31552693550102817731089447932, −2.08624607986613895264076875895, −0.56162249255901091311369490251, 0.56162249255901091311369490251, 2.08624607986613895264076875895, 3.31552693550102817731089447932, 3.64236917900063615445330919696, 5.48961937291403889921831847875, 6.09401404798080714234353605052, 6.91951309314448458916471192252, 8.055214595563953741216061111780, 8.961900971704783088623901552830, 9.744557719340947110103431364614

Graph of the $Z$-function along the critical line