L(s) = 1 | + (0.118 + 0.363i)3-s + (2.61 + 1.90i)5-s + (0.618 − 1.90i)7-s + (2.30 − 1.67i)9-s + (0.309 + 3.30i)11-s + (1 − 0.726i)13-s + (−0.381 + 1.17i)15-s + (0.5 + 0.363i)17-s + (−1.80 − 5.56i)19-s + 0.763·21-s − 1.23·23-s + (1.69 + 5.20i)25-s + (1.80 + 1.31i)27-s + (−1.38 + 4.25i)29-s + (1.61 − 1.17i)31-s + ⋯ |
L(s) = 1 | + (0.0681 + 0.209i)3-s + (1.17 + 0.850i)5-s + (0.233 − 0.718i)7-s + (0.769 − 0.559i)9-s + (0.0931 + 0.995i)11-s + (0.277 − 0.201i)13-s + (−0.0986 + 0.303i)15-s + (0.121 + 0.0881i)17-s + (−0.415 − 1.27i)19-s + 0.166·21-s − 0.257·23-s + (0.338 + 1.04i)25-s + (0.348 + 0.252i)27-s + (−0.256 + 0.789i)29-s + (0.290 − 0.211i)31-s + ⋯ |
Λ(s)=(=(704s/2ΓC(s)L(s)(0.927−0.374i)Λ(2−s)
Λ(s)=(=(704s/2ΓC(s+1/2)L(s)(0.927−0.374i)Λ(1−s)
Degree: |
2 |
Conductor: |
704
= 26⋅11
|
Sign: |
0.927−0.374i
|
Analytic conductor: |
5.62146 |
Root analytic conductor: |
2.37096 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ704(641,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 704, ( :1/2), 0.927−0.374i)
|
Particular Values
L(1) |
≈ |
2.01273+0.390943i |
L(21) |
≈ |
2.01273+0.390943i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−0.309−3.30i)T |
good | 3 | 1+(−0.118−0.363i)T+(−2.42+1.76i)T2 |
| 5 | 1+(−2.61−1.90i)T+(1.54+4.75i)T2 |
| 7 | 1+(−0.618+1.90i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−1+0.726i)T+(4.01−12.3i)T2 |
| 17 | 1+(−0.5−0.363i)T+(5.25+16.1i)T2 |
| 19 | 1+(1.80+5.56i)T+(−15.3+11.1i)T2 |
| 23 | 1+1.23T+23T2 |
| 29 | 1+(1.38−4.25i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−1.61+1.17i)T+(9.57−29.4i)T2 |
| 37 | 1+(−1.14+3.52i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.73−5.34i)T+(−33.1+24.0i)T2 |
| 43 | 1+8.56T+43T2 |
| 47 | 1+(−2−6.15i)T+(−38.0+27.6i)T2 |
| 53 | 1+(1.23−0.898i)T+(16.3−50.4i)T2 |
| 59 | 1+(2.66−8.19i)T+(−47.7−34.6i)T2 |
| 61 | 1+(2+1.45i)T+(18.8+58.0i)T2 |
| 67 | 1−11.0T+67T2 |
| 71 | 1+(4.23+3.07i)T+(21.9+67.5i)T2 |
| 73 | 1+(−3.20+9.87i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−10.8+7.88i)T+(24.4−75.1i)T2 |
| 83 | 1+(7.54+5.48i)T+(25.6+78.9i)T2 |
| 89 | 1+8.09T+89T2 |
| 97 | 1+(5.78−4.20i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45796263000477255791782624319, −9.709126456513467266355842838340, −9.119812211891116903703166691643, −7.66782436890770610737793173452, −6.86593511442014058207956331485, −6.28581107934889659182686803034, −4.96375545083315788195811752620, −4.02059519121880717507133596323, −2.73149174884401650336538326864, −1.48894032084849305696760035562,
1.39336544754811113656699097141, 2.28737442491466018081406974505, 3.92845744287755153731773295868, 5.19422661765513422226681008222, 5.77377233876305941554149123651, 6.68332659587717983714232691594, 8.145976137612683929787730298673, 8.531683897154999850758051211526, 9.595217841023178047537425727696, 10.17087732892897904865455711655