L(s) = 1 | + (0.118 + 0.363i)3-s + (2.61 + 1.90i)5-s + (0.618 − 1.90i)7-s + (2.30 − 1.67i)9-s + (0.309 + 3.30i)11-s + (1 − 0.726i)13-s + (−0.381 + 1.17i)15-s + (0.5 + 0.363i)17-s + (−1.80 − 5.56i)19-s + 0.763·21-s − 1.23·23-s + (1.69 + 5.20i)25-s + (1.80 + 1.31i)27-s + (−1.38 + 4.25i)29-s + (1.61 − 1.17i)31-s + ⋯ |
L(s) = 1 | + (0.0681 + 0.209i)3-s + (1.17 + 0.850i)5-s + (0.233 − 0.718i)7-s + (0.769 − 0.559i)9-s + (0.0931 + 0.995i)11-s + (0.277 − 0.201i)13-s + (−0.0986 + 0.303i)15-s + (0.121 + 0.0881i)17-s + (−0.415 − 1.27i)19-s + 0.166·21-s − 0.257·23-s + (0.338 + 1.04i)25-s + (0.348 + 0.252i)27-s + (−0.256 + 0.789i)29-s + (0.290 − 0.211i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 - 0.374i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.927 - 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.01273 + 0.390943i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.01273 + 0.390943i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-0.309 - 3.30i)T \) |
good | 3 | \( 1 + (-0.118 - 0.363i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-2.61 - 1.90i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.618 + 1.90i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-1 + 0.726i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.363i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.80 + 5.56i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.23T + 23T^{2} \) |
| 29 | \( 1 + (1.38 - 4.25i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.61 + 1.17i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.14 + 3.52i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.73 - 5.34i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 8.56T + 43T^{2} \) |
| 47 | \( 1 + (-2 - 6.15i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (1.23 - 0.898i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.66 - 8.19i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (2 + 1.45i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 11.0T + 67T^{2} \) |
| 71 | \( 1 + (4.23 + 3.07i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.20 + 9.87i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-10.8 + 7.88i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (7.54 + 5.48i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 8.09T + 89T^{2} \) |
| 97 | \( 1 + (5.78 - 4.20i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45796263000477255791782624319, −9.709126456513467266355842838340, −9.119812211891116903703166691643, −7.66782436890770610737793173452, −6.86593511442014058207956331485, −6.28581107934889659182686803034, −4.96375545083315788195811752620, −4.02059519121880717507133596323, −2.73149174884401650336538326864, −1.48894032084849305696760035562,
1.39336544754811113656699097141, 2.28737442491466018081406974505, 3.92845744287755153731773295868, 5.19422661765513422226681008222, 5.77377233876305941554149123651, 6.68332659587717983714232691594, 8.145976137612683929787730298673, 8.531683897154999850758051211526, 9.595217841023178047537425727696, 10.17087732892897904865455711655