L(s) = 1 | + (−0.945 + 2.90i)3-s + (2.43 − 1.76i)5-s + (−0.483 − 1.48i)7-s + (−5.14 − 3.73i)9-s + (3.21 + 0.815i)11-s + (2.95 + 2.14i)13-s + (2.84 + 8.74i)15-s + (3.62 − 2.63i)17-s + (−0.848 + 2.61i)19-s + 4.78·21-s + 4.77·23-s + (1.24 − 3.83i)25-s + (8.31 − 6.03i)27-s + (−1.53 − 4.72i)29-s + (−0.394 − 0.286i)31-s + ⋯ |
L(s) = 1 | + (−0.545 + 1.67i)3-s + (1.08 − 0.790i)5-s + (−0.182 − 0.562i)7-s + (−1.71 − 1.24i)9-s + (0.969 + 0.245i)11-s + (0.820 + 0.596i)13-s + (0.733 + 2.25i)15-s + (0.878 − 0.638i)17-s + (−0.194 + 0.599i)19-s + 1.04·21-s + 0.995·23-s + (0.249 − 0.767i)25-s + (1.59 − 1.16i)27-s + (−0.285 − 0.877i)29-s + (−0.0708 − 0.0514i)31-s + ⋯ |
Λ(s)=(=(704s/2ΓC(s)L(s)(0.513−0.858i)Λ(2−s)
Λ(s)=(=(704s/2ΓC(s+1/2)L(s)(0.513−0.858i)Λ(1−s)
Degree: |
2 |
Conductor: |
704
= 26⋅11
|
Sign: |
0.513−0.858i
|
Analytic conductor: |
5.62146 |
Root analytic conductor: |
2.37096 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ704(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 704, ( :1/2), 0.513−0.858i)
|
Particular Values
L(1) |
≈ |
1.39166+0.789337i |
L(21) |
≈ |
1.39166+0.789337i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−3.21−0.815i)T |
good | 3 | 1+(0.945−2.90i)T+(−2.42−1.76i)T2 |
| 5 | 1+(−2.43+1.76i)T+(1.54−4.75i)T2 |
| 7 | 1+(0.483+1.48i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−2.95−2.14i)T+(4.01+12.3i)T2 |
| 17 | 1+(−3.62+2.63i)T+(5.25−16.1i)T2 |
| 19 | 1+(0.848−2.61i)T+(−15.3−11.1i)T2 |
| 23 | 1−4.77T+23T2 |
| 29 | 1+(1.53+4.72i)T+(−23.4+17.0i)T2 |
| 31 | 1+(0.394+0.286i)T+(9.57+29.4i)T2 |
| 37 | 1+(−3.28−10.1i)T+(−29.9+21.7i)T2 |
| 41 | 1+(3.87−11.9i)T+(−33.1−24.0i)T2 |
| 43 | 1+7.45T+43T2 |
| 47 | 1+(−3.10+9.54i)T+(−38.0−27.6i)T2 |
| 53 | 1+(4.26+3.09i)T+(16.3+50.4i)T2 |
| 59 | 1+(−2.76−8.49i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−1.75+1.27i)T+(18.8−58.0i)T2 |
| 67 | 1+0.709T+67T2 |
| 71 | 1+(0.654−0.475i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.163+0.502i)T+(−59.0+42.9i)T2 |
| 79 | 1+(4.70+3.41i)T+(24.4+75.1i)T2 |
| 83 | 1+(5.73−4.16i)T+(25.6−78.9i)T2 |
| 89 | 1−7.76T+89T2 |
| 97 | 1+(2.93+2.13i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19014261763922672570103137525, −9.854958027558641776120563652970, −9.211534513358843476323957490447, −8.424376942337693351021982672244, −6.70759665610842168154802851673, −5.89856728786059952243031609562, −5.04221695984784814708614750948, −4.27810282787417513734553259181, −3.34150902537785425322736190677, −1.28788149289901907272967744584,
1.16663517949422693685878096668, 2.20515423061775787678946805721, 3.31594804297960282163949183437, 5.50218629760200417535193938706, 5.97016593473778133318686667194, 6.66863049094054999078714008372, 7.37544805239986662749963008212, 8.532328654827843820054407411793, 9.297656109610662583880879785517, 10.63891109087478116803185733225