Properties

Label 2-704-11.4-c1-0-11
Degree 22
Conductor 704704
Sign 0.5130.858i0.513 - 0.858i
Analytic cond. 5.621465.62146
Root an. cond. 2.370962.37096
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.945 + 2.90i)3-s + (2.43 − 1.76i)5-s + (−0.483 − 1.48i)7-s + (−5.14 − 3.73i)9-s + (3.21 + 0.815i)11-s + (2.95 + 2.14i)13-s + (2.84 + 8.74i)15-s + (3.62 − 2.63i)17-s + (−0.848 + 2.61i)19-s + 4.78·21-s + 4.77·23-s + (1.24 − 3.83i)25-s + (8.31 − 6.03i)27-s + (−1.53 − 4.72i)29-s + (−0.394 − 0.286i)31-s + ⋯
L(s)  = 1  + (−0.545 + 1.67i)3-s + (1.08 − 0.790i)5-s + (−0.182 − 0.562i)7-s + (−1.71 − 1.24i)9-s + (0.969 + 0.245i)11-s + (0.820 + 0.596i)13-s + (0.733 + 2.25i)15-s + (0.878 − 0.638i)17-s + (−0.194 + 0.599i)19-s + 1.04·21-s + 0.995·23-s + (0.249 − 0.767i)25-s + (1.59 − 1.16i)27-s + (−0.285 − 0.877i)29-s + (−0.0708 − 0.0514i)31-s + ⋯

Functional equation

Λ(s)=(704s/2ΓC(s)L(s)=((0.5130.858i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(704s/2ΓC(s+1/2)L(s)=((0.5130.858i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 704704    =    26112^{6} \cdot 11
Sign: 0.5130.858i0.513 - 0.858i
Analytic conductor: 5.621465.62146
Root analytic conductor: 2.370962.37096
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ704(257,)\chi_{704} (257, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 704, ( :1/2), 0.5130.858i)(2,\ 704,\ (\ :1/2),\ 0.513 - 0.858i)

Particular Values

L(1)L(1) \approx 1.39166+0.789337i1.39166 + 0.789337i
L(12)L(\frac12) \approx 1.39166+0.789337i1.39166 + 0.789337i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
11 1+(3.210.815i)T 1 + (-3.21 - 0.815i)T
good3 1+(0.9452.90i)T+(2.421.76i)T2 1 + (0.945 - 2.90i)T + (-2.42 - 1.76i)T^{2}
5 1+(2.43+1.76i)T+(1.544.75i)T2 1 + (-2.43 + 1.76i)T + (1.54 - 4.75i)T^{2}
7 1+(0.483+1.48i)T+(5.66+4.11i)T2 1 + (0.483 + 1.48i)T + (-5.66 + 4.11i)T^{2}
13 1+(2.952.14i)T+(4.01+12.3i)T2 1 + (-2.95 - 2.14i)T + (4.01 + 12.3i)T^{2}
17 1+(3.62+2.63i)T+(5.2516.1i)T2 1 + (-3.62 + 2.63i)T + (5.25 - 16.1i)T^{2}
19 1+(0.8482.61i)T+(15.311.1i)T2 1 + (0.848 - 2.61i)T + (-15.3 - 11.1i)T^{2}
23 14.77T+23T2 1 - 4.77T + 23T^{2}
29 1+(1.53+4.72i)T+(23.4+17.0i)T2 1 + (1.53 + 4.72i)T + (-23.4 + 17.0i)T^{2}
31 1+(0.394+0.286i)T+(9.57+29.4i)T2 1 + (0.394 + 0.286i)T + (9.57 + 29.4i)T^{2}
37 1+(3.2810.1i)T+(29.9+21.7i)T2 1 + (-3.28 - 10.1i)T + (-29.9 + 21.7i)T^{2}
41 1+(3.8711.9i)T+(33.124.0i)T2 1 + (3.87 - 11.9i)T + (-33.1 - 24.0i)T^{2}
43 1+7.45T+43T2 1 + 7.45T + 43T^{2}
47 1+(3.10+9.54i)T+(38.027.6i)T2 1 + (-3.10 + 9.54i)T + (-38.0 - 27.6i)T^{2}
53 1+(4.26+3.09i)T+(16.3+50.4i)T2 1 + (4.26 + 3.09i)T + (16.3 + 50.4i)T^{2}
59 1+(2.768.49i)T+(47.7+34.6i)T2 1 + (-2.76 - 8.49i)T + (-47.7 + 34.6i)T^{2}
61 1+(1.75+1.27i)T+(18.858.0i)T2 1 + (-1.75 + 1.27i)T + (18.8 - 58.0i)T^{2}
67 1+0.709T+67T2 1 + 0.709T + 67T^{2}
71 1+(0.6540.475i)T+(21.967.5i)T2 1 + (0.654 - 0.475i)T + (21.9 - 67.5i)T^{2}
73 1+(0.163+0.502i)T+(59.0+42.9i)T2 1 + (0.163 + 0.502i)T + (-59.0 + 42.9i)T^{2}
79 1+(4.70+3.41i)T+(24.4+75.1i)T2 1 + (4.70 + 3.41i)T + (24.4 + 75.1i)T^{2}
83 1+(5.734.16i)T+(25.678.9i)T2 1 + (5.73 - 4.16i)T + (25.6 - 78.9i)T^{2}
89 17.76T+89T2 1 - 7.76T + 89T^{2}
97 1+(2.93+2.13i)T+(29.9+92.2i)T2 1 + (2.93 + 2.13i)T + (29.9 + 92.2i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.19014261763922672570103137525, −9.854958027558641776120563652970, −9.211534513358843476323957490447, −8.424376942337693351021982672244, −6.70759665610842168154802851673, −5.89856728786059952243031609562, −5.04221695984784814708614750948, −4.27810282787417513734553259181, −3.34150902537785425322736190677, −1.28788149289901907272967744584, 1.16663517949422693685878096668, 2.20515423061775787678946805721, 3.31594804297960282163949183437, 5.50218629760200417535193938706, 5.97016593473778133318686667194, 6.66863049094054999078714008372, 7.37544805239986662749963008212, 8.532328654827843820054407411793, 9.297656109610662583880879785517, 10.63891109087478116803185733225

Graph of the ZZ-function along the critical line