L(s) = 1 | + (−0.945 + 2.90i)3-s + (2.43 − 1.76i)5-s + (−0.483 − 1.48i)7-s + (−5.14 − 3.73i)9-s + (3.21 + 0.815i)11-s + (2.95 + 2.14i)13-s + (2.84 + 8.74i)15-s + (3.62 − 2.63i)17-s + (−0.848 + 2.61i)19-s + 4.78·21-s + 4.77·23-s + (1.24 − 3.83i)25-s + (8.31 − 6.03i)27-s + (−1.53 − 4.72i)29-s + (−0.394 − 0.286i)31-s + ⋯ |
L(s) = 1 | + (−0.545 + 1.67i)3-s + (1.08 − 0.790i)5-s + (−0.182 − 0.562i)7-s + (−1.71 − 1.24i)9-s + (0.969 + 0.245i)11-s + (0.820 + 0.596i)13-s + (0.733 + 2.25i)15-s + (0.878 − 0.638i)17-s + (−0.194 + 0.599i)19-s + 1.04·21-s + 0.995·23-s + (0.249 − 0.767i)25-s + (1.59 − 1.16i)27-s + (−0.285 − 0.877i)29-s + (−0.0708 − 0.0514i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39166 + 0.789337i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39166 + 0.789337i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-3.21 - 0.815i)T \) |
good | 3 | \( 1 + (0.945 - 2.90i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (-2.43 + 1.76i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.483 + 1.48i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.95 - 2.14i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.62 + 2.63i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.848 - 2.61i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 4.77T + 23T^{2} \) |
| 29 | \( 1 + (1.53 + 4.72i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (0.394 + 0.286i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.28 - 10.1i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (3.87 - 11.9i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 7.45T + 43T^{2} \) |
| 47 | \( 1 + (-3.10 + 9.54i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (4.26 + 3.09i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.76 - 8.49i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.75 + 1.27i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 0.709T + 67T^{2} \) |
| 71 | \( 1 + (0.654 - 0.475i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (0.163 + 0.502i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (4.70 + 3.41i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (5.73 - 4.16i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 7.76T + 89T^{2} \) |
| 97 | \( 1 + (2.93 + 2.13i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19014261763922672570103137525, −9.854958027558641776120563652970, −9.211534513358843476323957490447, −8.424376942337693351021982672244, −6.70759665610842168154802851673, −5.89856728786059952243031609562, −5.04221695984784814708614750948, −4.27810282787417513734553259181, −3.34150902537785425322736190677, −1.28788149289901907272967744584,
1.16663517949422693685878096668, 2.20515423061775787678946805721, 3.31594804297960282163949183437, 5.50218629760200417535193938706, 5.97016593473778133318686667194, 6.66863049094054999078714008372, 7.37544805239986662749963008212, 8.532328654827843820054407411793, 9.297656109610662583880879785517, 10.63891109087478116803185733225