L(s) = 1 | + 2i·3-s − 3·9-s + i·11-s + 25-s − 4i·27-s − 2·33-s + 49-s + 2i·59-s − 2i·67-s + 2i·75-s + 5·81-s + 2·89-s + 2·97-s − 3i·99-s − 2·113-s + ⋯ |
L(s) = 1 | + 2i·3-s − 3·9-s + i·11-s + 25-s − 4i·27-s − 2·33-s + 49-s + 2i·59-s − 2i·67-s + 2i·75-s + 5·81-s + 2·89-s + 2·97-s − 3i·99-s − 2·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8560095350\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8560095350\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 - iT \) |
good | 3 | \( 1 - 2iT - T^{2} \) |
| 5 | \( 1 - T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 2iT - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + 2iT - T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 2T + T^{2} \) |
| 97 | \( 1 - 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60478968470828465751359691469, −10.24453960502461917383461263218, −9.292326388280502841526739036008, −8.827601541338360023306098495008, −7.67293772839932259760519253474, −6.31962512994760553433904220611, −5.23468559375425680051641178650, −4.58412574685565488541534096183, −3.70641602444428921028491201471, −2.60022428458752788006475327747,
0.981826750872051918702521062903, 2.32624266104856521471996749791, 3.34745578727143355111942207536, 5.24926264461355859652897330943, 6.12647541872302220434777393475, 6.81604010288850754673375959419, 7.66774653513522675185491628826, 8.426438275231046570272118518283, 9.066422904354898716585572466241, 10.62580710666441373309431785252