L(s) = 1 | + i·3-s + 1.73i·5-s − i·11-s − 1.73·15-s − 1.73·23-s − 1.99·25-s + i·27-s + 1.73·31-s + 33-s − 1.73i·37-s + 49-s + 1.73·55-s + i·59-s − i·67-s − 1.73i·69-s + ⋯ |
L(s) = 1 | + i·3-s + 1.73i·5-s − i·11-s − 1.73·15-s − 1.73·23-s − 1.99·25-s + i·27-s + 1.73·31-s + 33-s − 1.73i·37-s + 49-s + 1.73·55-s + i·59-s − i·67-s − 1.73i·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9486225243\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9486225243\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 - 1.73iT - T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + 1.73T + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 1.73T + T^{2} \) |
| 37 | \( 1 + 1.73iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - iT - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 - 1.73T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72484547208088205797295849686, −10.20745764341117358145841610966, −9.492945756502734424269664877455, −8.314266631517820958403245538905, −7.37671498738757632703418864884, −6.40521337497273557715870681164, −5.65899472335893004724788390613, −4.19158621722119490265550981881, −3.48722383147019187723139050942, −2.44568619602551735819792948858,
1.16728486179106102319791020140, 2.17212466483325350060575125605, 4.16609623914396943708179056102, 4.85720412065493504939454193658, 5.98962888256222667869782967086, 6.93407456699106966502233083049, 8.043359828562033382978911581842, 8.340571488010252642225880465354, 9.604008416826061200504921776161, 10.08040698691470360840492460271