L(s) = 1 | + i·3-s + 1.73i·5-s − i·11-s − 1.73·15-s − 1.73·23-s − 1.99·25-s + i·27-s + 1.73·31-s + 33-s − 1.73i·37-s + 49-s + 1.73·55-s + i·59-s − i·67-s − 1.73i·69-s + ⋯ |
L(s) = 1 | + i·3-s + 1.73i·5-s − i·11-s − 1.73·15-s − 1.73·23-s − 1.99·25-s + i·27-s + 1.73·31-s + 33-s − 1.73i·37-s + 49-s + 1.73·55-s + i·59-s − i·67-s − 1.73i·69-s + ⋯ |
Λ(s)=(=(704s/2ΓC(s)L(s)(−0.258−0.965i)Λ(1−s)
Λ(s)=(=(704s/2ΓC(s)L(s)(−0.258−0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
704
= 26⋅11
|
Sign: |
−0.258−0.965i
|
Analytic conductor: |
0.351341 |
Root analytic conductor: |
0.592740 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ704(417,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 704, ( :0), −0.258−0.965i)
|
Particular Values
L(21) |
≈ |
0.9486225243 |
L(21) |
≈ |
0.9486225243 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+iT |
good | 3 | 1−iT−T2 |
| 5 | 1−1.73iT−T2 |
| 7 | 1−T2 |
| 13 | 1+T2 |
| 17 | 1−T2 |
| 19 | 1+T2 |
| 23 | 1+1.73T+T2 |
| 29 | 1+T2 |
| 31 | 1−1.73T+T2 |
| 37 | 1+1.73iT−T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1+T2 |
| 53 | 1−T2 |
| 59 | 1−iT−T2 |
| 61 | 1+T2 |
| 67 | 1+iT−T2 |
| 71 | 1−1.73T+T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1+T+T2 |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72484547208088205797295849686, −10.20745764341117358145841610966, −9.492945756502734424269664877455, −8.314266631517820958403245538905, −7.37671498738757632703418864884, −6.40521337497273557715870681164, −5.65899472335893004724788390613, −4.19158621722119490265550981881, −3.48722383147019187723139050942, −2.44568619602551735819792948858,
1.16728486179106102319791020140, 2.17212466483325350060575125605, 4.16609623914396943708179056102, 4.85720412065493504939454193658, 5.98962888256222667869782967086, 6.93407456699106966502233083049, 8.043359828562033382978911581842, 8.340571488010252642225880465354, 9.604008416826061200504921776161, 10.08040698691470360840492460271