L(s) = 1 | + (−1.22 − 0.707i)2-s + (0.999 + 1.73i)4-s + 2.44·5-s − 3.46i·7-s − 2.82i·8-s + (−2.99 − 1.73i)10-s + 2.82i·11-s + 3.46i·13-s + (−2.44 + 4.24i)14-s + (−2.00 + 3.46i)16-s − 1.41i·17-s − 4·19-s + (2.44 + 4.24i)20-s + (2.00 − 3.46i)22-s − 4.89·23-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)2-s + (0.499 + 0.866i)4-s + 1.09·5-s − 1.30i·7-s − 0.999i·8-s + (−0.948 − 0.547i)10-s + 0.852i·11-s + 0.960i·13-s + (−0.654 + 1.13i)14-s + (−0.500 + 0.866i)16-s − 0.342i·17-s − 0.917·19-s + (0.547 + 0.948i)20-s + (0.426 − 0.738i)22-s − 1.02·23-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.816+0.577i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(0.816+0.577i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.816+0.577i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), 0.816+0.577i)
|
Particular Values
L(1) |
≈ |
0.694018−0.220585i |
L(21) |
≈ |
0.694018−0.220585i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.22+0.707i)T |
| 3 | 1 |
good | 5 | 1−2.44T+5T2 |
| 7 | 1+3.46iT−7T2 |
| 11 | 1−2.82iT−11T2 |
| 13 | 1−3.46iT−13T2 |
| 17 | 1+1.41iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+4.89T+23T2 |
| 29 | 1+2.44T+29T2 |
| 31 | 1−3.46iT−31T2 |
| 37 | 1−37T2 |
| 41 | 1+1.41iT−41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1−4.89T+47T2 |
| 53 | 1+7.34T+53T2 |
| 59 | 1−11.3iT−59T2 |
| 61 | 1+13.8iT−61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1−14.6T+71T2 |
| 73 | 1+4T+73T2 |
| 79 | 1+3.46iT−79T2 |
| 83 | 1+14.1iT−83T2 |
| 89 | 1−7.07iT−89T2 |
| 97 | 1−8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.29507043209768551684943723357, −13.40338007658979646430857765147, −12.26714419918988143722027725306, −10.86031579940991717493207707704, −10.03287097392496037161348867850, −9.177057214353520543639616944260, −7.56529011520329593222975415410, −6.50039621202296958812085808262, −4.19301040613323135704279591276, −1.94090115405802890267881693810,
2.30323757022301936994344411634, 5.63436225832251089196765755857, 6.12384046882508657970223767193, 8.066099814891969572629206272589, 9.007288407900788220228689770529, 10.01952105990926015691759000204, 11.13584091830949222627430304633, 12.58823283268444817242089857831, 13.90088076020319087180230448325, 14.98288140804421262997902816228