L(s) = 1 | + (−1.22 − 0.707i)2-s + (0.999 + 1.73i)4-s + 2.44·5-s − 3.46i·7-s − 2.82i·8-s + (−2.99 − 1.73i)10-s + 2.82i·11-s + 3.46i·13-s + (−2.44 + 4.24i)14-s + (−2.00 + 3.46i)16-s − 1.41i·17-s − 4·19-s + (2.44 + 4.24i)20-s + (2.00 − 3.46i)22-s − 4.89·23-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)2-s + (0.499 + 0.866i)4-s + 1.09·5-s − 1.30i·7-s − 0.999i·8-s + (−0.948 − 0.547i)10-s + 0.852i·11-s + 0.960i·13-s + (−0.654 + 1.13i)14-s + (−0.500 + 0.866i)16-s − 0.342i·17-s − 0.917·19-s + (0.547 + 0.948i)20-s + (0.426 − 0.738i)22-s − 1.02·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.694018 - 0.220585i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.694018 - 0.220585i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 + 0.707i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 2.44T + 5T^{2} \) |
| 7 | \( 1 + 3.46iT - 7T^{2} \) |
| 11 | \( 1 - 2.82iT - 11T^{2} \) |
| 13 | \( 1 - 3.46iT - 13T^{2} \) |
| 17 | \( 1 + 1.41iT - 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + 4.89T + 23T^{2} \) |
| 29 | \( 1 + 2.44T + 29T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 1.41iT - 41T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 - 4.89T + 47T^{2} \) |
| 53 | \( 1 + 7.34T + 53T^{2} \) |
| 59 | \( 1 - 11.3iT - 59T^{2} \) |
| 61 | \( 1 + 13.8iT - 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 - 14.6T + 71T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 + 3.46iT - 79T^{2} \) |
| 83 | \( 1 + 14.1iT - 83T^{2} \) |
| 89 | \( 1 - 7.07iT - 89T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.29507043209768551684943723357, −13.40338007658979646430857765147, −12.26714419918988143722027725306, −10.86031579940991717493207707704, −10.03287097392496037161348867850, −9.177057214353520543639616944260, −7.56529011520329593222975415410, −6.50039621202296958812085808262, −4.19301040613323135704279591276, −1.94090115405802890267881693810,
2.30323757022301936994344411634, 5.63436225832251089196765755857, 6.12384046882508657970223767193, 8.066099814891969572629206272589, 9.007288407900788220228689770529, 10.01952105990926015691759000204, 11.13584091830949222627430304633, 12.58823283268444817242089857831, 13.90088076020319087180230448325, 14.98288140804421262997902816228